Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of Ancient Primate Counters "Darwinus" Discovery

23.10.2009
A scientific analysis of a recently discovered adapiform, an ancient primate, reveals that the fossil, called Afradapis, is not on the evolutionary lineage of anthropoids (Old World Monkeys and higher primates, including humans) but instead more closely to lemurs and lorises.

Led by Stony Brook University paleontologist Erik R. Seiffert, Ph.D., the research supports the more commonly held theory on adapiform evolution and refutes a claim earlier in 2009 by scientists that described another adapiform, called Darwinius, as a direct link to the lineage leading to higher primates. The study findings are reported in the October 22 issue of Nature.

The study of Afradapis, recently discovered in northern Egypt, involves a complete analysis of the jaw and teeth that reconstructs the most likely evolutionary tree of the 37 million year-old fossil. Dr. Seiffert and colleagues used a scientific method called parsimony evidence that compares Afradapis’ jaw and teeth across 117 living and extinct primates.

“Our analysis is the first to incorporate evidence from all the key players in the anthropoid origins debate, that is all of the fossil species that have been proposed as possible early anthropoids, including a large sampling of adapiform primates,” says Dr. Seiffert, Assistant Professor in the Department of Anatomical Sciences, Stony Brook University. “The adapiform lineage that includes Darwinius and Afradapis has been particularly controversial, and we are finding new evidence that allows us to be increasingly confident that the anatomical features that these adapiforms share with anthropoids are due to convergent evolution and not common ancestry.”

The controversy on the adapiform evolutionary line escalated when a team of European and American paleontologists reported in the May 19, 2009, online edition of PloS One that their two-year analysis of Darwinius indicates the adapiform is the first link to all humans, supporting a common ancestry theory. Some media publicized their finding that the “missing link” to anthropoids had been found.

Conversely, Dr. Seiffert and colleagues’ analysis of Afradapis, and thus ancient adapiforms, supports the convergence evolutionary theory and contributes to a growing body of evidence that indicates that convergent evolution was a common phenomenon in early primate evolution. Convergent evolution is a process in which organisms and animals become similar in shape or structure, in response to similar environmental conditions, despite that their evolutionary lineage is different.

Dr. Seiffert explains that the common ancestry theory of adapiforms linking them more closely to higher primates than lemurs hinges on features such as fusion of the two halves of the jaw, reduction and loss of the first frew premolar teeth, and the presence of front teeth (incisors) that are shaped like a spatula. However, he points out that the study of Afradapis shows the fusion of the two halves of the jaw clearly evolved convergently in adapiforms and anthropoids, as even the earliest anthropoids have unfused mandibles.

“Incisor teeth that are shaped like a spatula might have been present in the last common ancestor or all primates, and so would not specifically support a link between adapiforms and anthropoids,” adds Dr. Seiffert. “Our analysis also indicates that the reduction and/or loss of the first few premolars must have evolved convergently in adapiforms and anthropoids because of some of Afradapis’ close relatives retain a full complement of four premolars on each side of the jaw, as in many other early mammalian relatives of primates.”

In the anatomical analysis published in Nature titled “Convergent evolution of anthropoid-like adaptations in Eocene adapiform primates,” the authors point out that at the very least Afradapis, the largest non-anthropoid primate ever documented in Afro-Arabia, provides surprising new evidence for primitive primate diversity in the Eocene era of Africa. They also contend that their findings raise the possibility that ecological competition between adapiforms and higher primates, based on environmental and geography changes, led to anatomical adaptations by both and played an important roles during early primate evolution.

The research for the study was supported by the Research Foundation of the State University of New York, and grants from the U.S. National Science Foundation and The Leakey Foundation.

In addition to Dr. Seiffert, co-authors of the study include: Jonathan M. G. Perry, Department of Anatomy, Midwestern University; Elwyn L. Simons, Division of Fossil Primates, Duke Lemur Center, Duke University; and Doug M. Boyer, Department of Ecology & Evolution, Stony Brook University.

The Department of Anatomical Sciences is one of 25 departments within Stony Brook University School of Medicine. The department includes graduate and doctoral programs in Anatomical Sciences. Fields of study include research on human evolutionary anatomy, morphology and vertebrate paleontology. Many faculty members in the department are also participants in an interdepartmental graduate program in anthropological sciences that is recognized worldwide for its faculty and research strengths in functional morphology and human evolution.

Greg Filiano | Newswise Science News
Further information:
http://www.stonybrook.edu
http://commcgi.cc.stonybrook.edu/artman/publish/index.shtml

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>