Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford breakthrough provides picture of underground water

18.06.2014

Stanford scientists prove that satellite-collected data can accurately measure aquifer levels, a finding with potentially huge implications for management of precious global water sources.

Superman isn't the only one who can see through solid surfaces. In a development that could revolutionize the management of precious groundwater around the world, Stanford researchers have pioneered the use of satellites to accurately measure levels of water stored hundreds of feet below ground. Their findings were published recently in Water Resources Research.


Stanford scientists prove that satellite-collected data can accurately measure underground water, an important source for crop irrigation. (Photo: USDA)

Groundwater provides 25 to 40 percent of all drinking water worldwide, and is the primary source of freshwater in many arid countries, according to the National Groundwater Association. About 60 percent of all withdrawn groundwater goes to crop irrigation. In the United States, the number is closer to 70 percent. In much of the world, however, underground reservoirs or aquifers are poorly managed and rapidly depleted due to a lack of water-level data. Developing useful groundwater models, availability predictions and water budgets is very challenging.

Study co-author Rosemary Knight, a professor of geophysics and senior fellow, by courtesy, at the Stanford Woods Institute for the Environment, compared groundwater use to a mismanaged bank account: "It's like me saying I'm going to retire and live off my savings without knowing how much is in the account."

Lead author Jessica Reeves, a postdoctoral scholar in geophysics, extended Knight's analogy to the connection among farmers who depend on the same groundwater source. "Imagine your account was connected to someone else's account, and they were withdrawing from it without your knowing."

Until now, the only way a water manager could gather data about the state of water tables in a watershed was to drill monitoring wells. The process is time and resource intensive, especially for confined aquifers, which are deep reservoirs separated from the ground surface by multiple layers of impermeable clay. Even with monitoring wells, good data is not guaranteed. Much of the data available from monitoring wells across the American West is old and of varying quality and scientific usefulness. Compounding the problem, not all well data is openly shared.

To solve these challenges, Reeves, Knight, Stanford Woods Institute-affiliated geophysics and electrical engineering Professor Howard Zebker, Stanford civil and environmental engineering Professor Peter Kitanidis and Willem Schreüder of Principia Mathematica Inc. looked to the sky.

The basic concept: Satellites that use electromagnetic waves to monitor changes in the elevation of Earth's surface to within a millimeter could be mined for clues about groundwater. The technology, Interferometric Synthetic Aperture Radar (InSAR), had previously been used primarily to collect data on volcanoes, earthquakes and landslides.

With funding from NASA, the researchers used InSAR to make measurements at 15 locations in Colorado's San Luis Valley, an important agricultural region and flyway for migrating birds. Based on observed changes in Earth's surface, the scientists compiled water-level measurements for confined aquifers at three of the sampling locations that matched the data from nearby monitoring wells.

"If we can get this working in between wells, we can measure groundwater levels across vast areas without using lots of on-the-ground monitors," Reeves said.

The breakthrough holds the potential for giving resource managers in Colorado and elsewhere valuable data as they build models to assess scenarios such as the effect on groundwater from population increases and droughts.

Just as computers and smartphones inevitably get faster, satellite data will only improve. That means more and better data for monitoring and managing groundwater. Eventually, InSAR data could play a vital role in measuring seasonal changes in groundwater supply and help determine levels for sustainable water use.

In the meantime, Knight envisions a Stanford-based, user-friendly online database that consolidates InSAR findings and a range of other current remote sensing data for soil moisture, precipitation and other components of a water budget. "Very few, if any, groundwater managers are tapping into any of the data," Knight said. With Zebker, postdoctoral fellow Jingyi Chen and colleagues at the University of South Carolina, Knight recently submitted a grant proposal for this concept to NASA.

The Stanford Woods Institute for the Environment is finding practical ways to meet growing demand for freshwater. Learn more about Woods-sponsored freshwater research.

Contact

Rosemary Knight, Stanford Woods Institute for the Environment, (650) 736-1487, rknight@stanford.edu

Jesse Reeves, Stanford Stanford Geophysics Department, (650) 897-5401, jesser@stanford.edu

Rob Jordan, Stanford Woods Institute for the Environment, (650) 721-1881, rjordan@stanford.edu

Bjorn Carey | Eurek Alert!
Further information:
http://news.stanford.edu/pr/2014/pr-radar-groundwater-woods-061614.html

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>