Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spacecraft catches thunderstorms hurling antimatter into space

11.01.2011
Scientists using NASA's Fermi Gamma-ray Space Telescope have detected beams of antimatter produced above thunderstorms on Earth, a phenomenon never seen before.

Scientists think the antimatter particles were formed in a terrestrial gamma-ray flash (TGF), a brief burst produced inside thunderstorms and shown to be associated with lightning. It is estimated that about 500 such flashes occur daily worldwide, but most go undetected.

"These signals are the first direct evidence that thunderstorms make antimatter particle beams," said Michael Briggs, a member of Fermi's Gamma-ray Burst Monitor (GBM) team at the University of Alabama in Huntsville (UAH).

Briggs presented the findings today during a news briefing at the American Astronomical Society meeting in Seattle. A paper on the findings has been accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union.

The Fermi spacecraft is designed to monitor gamma rays, the highest energy form of light. When antimatter striking Fermi collides with a particle of normal matter, both particles immediately are annihilated and transformed into gamma rays. The satellite's burst monitor has detected gamma rays with energies of 511,000 electron volts, a signal indicating an electron has met its antimatter counterpart, a positron.

Although the gamma-ray burst monitor is designed to observe high- energy events in the universe, it's also providing valuable insights into this strange local phenomenon. The instrument constantly monitors the entire celestial sky above and the Earth below. The GBM team has identified 130 terrestrial gamma-ray flashes since Fermi's launch in 2008.

The spacecraft was located immediately above a thunderstorm for most of the observed terrestrial gamma-ray flashes. But, in four cases, storms were far from Fermi. In addition, lightning-generated radio signals detected by a global monitoring network indicated the only lightning at the time was hundreds or more miles away. During one flash, which occurred on Dec. 14, 2009, Fermi was located over Egypt. But the active storm was in Zambia, some 4,500 kilometers (2,800 miles) to the south. The distant storm was below Fermi's horizon, so any gamma rays it produced could not have been detected.

"Even though Fermi couldn't see the storm, the spacecraft nevertheless was magnetically connected to it," said Joseph Dwyer at the Florida Institute of Technology in Melbourne, Florida, a coauthor on the scientific paper. "The TGF produced high-speed electrons and positrons, which then rode up Earth's magnetic field to strike the spacecraft."

The beam continued past Fermi, reached a location, known as a mirror point, where its motion was reversed, and then hit the spacecraft a second time just 23 milliseconds later. Each time, positrons in the beam collided with electrons in the spacecraft. The particles annihilated each other, emitting gamma rays detected by Fermi's GBM instrument.

Scientists long have suspected that terrestrial gamma-ray flashes arise from the strong electric fields near the tops of thunderstorms. Under the right conditions, they say, the field becomes strong enough that it drives an upward avalanche of electrons. Reaching speeds nearly as fast as light, the high-energy electrons give off gamma rays when they're deflected by air molecules. Normally, these gamma rays are detected as a terrestrial gamma-ray flash.

But the cascading electrons produce so many gamma rays that they blast electrons and positrons clear out of the atmosphere. This happens when the gamma-ray energy transforms into a pair of particles: an electron and a positron. It's these particles that reach Fermi's orbit.

The detection of positrons shows many high-energy particles are being ejected from the atmosphere. In fact, scientists now think that all terrestrial gamma-ray flashes emit electron/positron beams.

"The Fermi results put us a step closer to understanding how TGFs work," said Steven Cummer at Duke University in Durham, North Carolina, who researches atmospheric electricity and is neither a member of the Fermi team nor a co-author on the paper. "We still have to figure out what is special about these storms and the precise role lightning plays in the process," he added.

NASA's Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership. It is managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland. It was developed in collaboration with the U.S. Department of Energy, with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

The GBM Instrument Operations Center is located at the National Space Science Technology Center in Huntsville, Ala. The team includes a collaboration of scientists from UAH, NASA's Marshall Space Flight Center in Huntsville, the Max Planck Institute for Extraterrestrial Physics in Germany and other institutions.

Images and animations:

Visuals, including animations, related to these new findings are available at:

http://svs.gsfc.nasa.gov/vis/a010000/a010700/a010706/index.html

NASA's press release is at: http://www.nasa.gov/mission_pages/GLAST/news/fermi-thunderstorms.html

Title: "Electron-Positron Beams from Terrestrial Lightning Observed with Fermi GBM."

Authors:

Briggs, Michael S., Vandiver L. Chaplin, Valerie Connaughton, P. N. Bhat, William S. Paciesas and Robert D. Preece: The Center for Space Plasma and Aeronomic Research, Huntsville, Alabama, USA; Paciesas and Preece are also at Department of Physics, University of Alabama, Huntsville, Huntsville, Alabama, USA;

Gerald J. Fishman and Colleen Wilson-Hodge: Space Science Office, NASA Marshall Space Flight Center, Huntsville, Alabama, USA;

R. Marc Kippen: ISR-1, Los Alamos National Laboratory, Los Alamos, New Mexico, USA;

Charles A. Meegan: Universities Space Research Association, Huntsville, Alabama, USA;

Jochen Greiner and Andreas von Kienlin: Max-Planck Institut fuer extraterrestrische Physik, D-85741, Garching, Germany;

Joseph R. Dwyer: Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA;

David M. Smith: Department of Physics, University of California, Santa Cruz, Santa Cruz, California, USA.

Contact information for the authors: Michael Briggs, Tel. +1 (256) 961-7667, michael.briggs@uah.edu

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>