Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spacecraft catches thunderstorms hurling antimatter into space

11.01.2011
Scientists using NASA's Fermi Gamma-ray Space Telescope have detected beams of antimatter produced above thunderstorms on Earth, a phenomenon never seen before.

Scientists think the antimatter particles were formed in a terrestrial gamma-ray flash (TGF), a brief burst produced inside thunderstorms and shown to be associated with lightning. It is estimated that about 500 such flashes occur daily worldwide, but most go undetected.

"These signals are the first direct evidence that thunderstorms make antimatter particle beams," said Michael Briggs, a member of Fermi's Gamma-ray Burst Monitor (GBM) team at the University of Alabama in Huntsville (UAH).

Briggs presented the findings today during a news briefing at the American Astronomical Society meeting in Seattle. A paper on the findings has been accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union.

The Fermi spacecraft is designed to monitor gamma rays, the highest energy form of light. When antimatter striking Fermi collides with a particle of normal matter, both particles immediately are annihilated and transformed into gamma rays. The satellite's burst monitor has detected gamma rays with energies of 511,000 electron volts, a signal indicating an electron has met its antimatter counterpart, a positron.

Although the gamma-ray burst monitor is designed to observe high- energy events in the universe, it's also providing valuable insights into this strange local phenomenon. The instrument constantly monitors the entire celestial sky above and the Earth below. The GBM team has identified 130 terrestrial gamma-ray flashes since Fermi's launch in 2008.

The spacecraft was located immediately above a thunderstorm for most of the observed terrestrial gamma-ray flashes. But, in four cases, storms were far from Fermi. In addition, lightning-generated radio signals detected by a global monitoring network indicated the only lightning at the time was hundreds or more miles away. During one flash, which occurred on Dec. 14, 2009, Fermi was located over Egypt. But the active storm was in Zambia, some 4,500 kilometers (2,800 miles) to the south. The distant storm was below Fermi's horizon, so any gamma rays it produced could not have been detected.

"Even though Fermi couldn't see the storm, the spacecraft nevertheless was magnetically connected to it," said Joseph Dwyer at the Florida Institute of Technology in Melbourne, Florida, a coauthor on the scientific paper. "The TGF produced high-speed electrons and positrons, which then rode up Earth's magnetic field to strike the spacecraft."

The beam continued past Fermi, reached a location, known as a mirror point, where its motion was reversed, and then hit the spacecraft a second time just 23 milliseconds later. Each time, positrons in the beam collided with electrons in the spacecraft. The particles annihilated each other, emitting gamma rays detected by Fermi's GBM instrument.

Scientists long have suspected that terrestrial gamma-ray flashes arise from the strong electric fields near the tops of thunderstorms. Under the right conditions, they say, the field becomes strong enough that it drives an upward avalanche of electrons. Reaching speeds nearly as fast as light, the high-energy electrons give off gamma rays when they're deflected by air molecules. Normally, these gamma rays are detected as a terrestrial gamma-ray flash.

But the cascading electrons produce so many gamma rays that they blast electrons and positrons clear out of the atmosphere. This happens when the gamma-ray energy transforms into a pair of particles: an electron and a positron. It's these particles that reach Fermi's orbit.

The detection of positrons shows many high-energy particles are being ejected from the atmosphere. In fact, scientists now think that all terrestrial gamma-ray flashes emit electron/positron beams.

"The Fermi results put us a step closer to understanding how TGFs work," said Steven Cummer at Duke University in Durham, North Carolina, who researches atmospheric electricity and is neither a member of the Fermi team nor a co-author on the paper. "We still have to figure out what is special about these storms and the precise role lightning plays in the process," he added.

NASA's Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership. It is managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland. It was developed in collaboration with the U.S. Department of Energy, with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

The GBM Instrument Operations Center is located at the National Space Science Technology Center in Huntsville, Ala. The team includes a collaboration of scientists from UAH, NASA's Marshall Space Flight Center in Huntsville, the Max Planck Institute for Extraterrestrial Physics in Germany and other institutions.

Images and animations:

Visuals, including animations, related to these new findings are available at:

http://svs.gsfc.nasa.gov/vis/a010000/a010700/a010706/index.html

NASA's press release is at: http://www.nasa.gov/mission_pages/GLAST/news/fermi-thunderstorms.html

Title: "Electron-Positron Beams from Terrestrial Lightning Observed with Fermi GBM."

Authors:

Briggs, Michael S., Vandiver L. Chaplin, Valerie Connaughton, P. N. Bhat, William S. Paciesas and Robert D. Preece: The Center for Space Plasma and Aeronomic Research, Huntsville, Alabama, USA; Paciesas and Preece are also at Department of Physics, University of Alabama, Huntsville, Huntsville, Alabama, USA;

Gerald J. Fishman and Colleen Wilson-Hodge: Space Science Office, NASA Marshall Space Flight Center, Huntsville, Alabama, USA;

R. Marc Kippen: ISR-1, Los Alamos National Laboratory, Los Alamos, New Mexico, USA;

Charles A. Meegan: Universities Space Research Association, Huntsville, Alabama, USA;

Jochen Greiner and Andreas von Kienlin: Max-Planck Institut fuer extraterrestrische Physik, D-85741, Garching, Germany;

Joseph R. Dwyer: Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA;

David M. Smith: Department of Physics, University of California, Santa Cruz, Santa Cruz, California, USA.

Contact information for the authors: Michael Briggs, Tel. +1 (256) 961-7667, michael.briggs@uah.edu

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>