Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use islands to gauge rainfall's effect on landscapes

11.04.2013
If you've ever stood on a hill during a rainstorm, you've probably witnessed landscape evolution, at least on a small scale: rivulets of water streaming down a slope, cutting deeper trenches in the earth when the rain turns heavier.

It's a simple phenomenon that scientists have long believed applies to large-scale landforms as well — that is, rivers cut faster into mountains that receive heavier precipitation. It's thought that if rainfall patterns influence how rivers cut into rock, over time, the cumulative erosion and its effects on rock deformation can ultimately control how entire mountain ranges take shape.

However, this seemingly intuitive theory — that precipitation influences how quickly landscapes erode — has been difficult to verify, because many other factors, such as rock strength and tectonic-plate motions, can also influence erosion rates.

Now researchers in MIT's Department of Earth, Atmospheric and Planetary Sciences (EAPS) have tested this theory by studying the relationship between precipitation and erosion on the Hawaiian island of Kauai, which has one of the world's steepest gradients in annual rainfall. The center of the island receives more than 9 meters (about 350 inches) of rain per year, while its shores remain relatively dry, with as little as half a meter (about 20 inches) of rainfall annually.

The researchers charted the island's precipitation and estimated how much land has eroded over Kauai's 4-million-year history. They found a clear pattern: The more rain a region receives, the more efficiently its rivers cut into rock, forming deep canyons in the wettest areas. The group used these measurements to test a widely used but rarely tested mathematical formula for erosion, and found that when they factored precipitation rates into the equation, they could accurately predict how rivers carved out the island over time.

"We now have empirical support for an idea that has been around for a while," says Ken Ferrier, who led the study while a postdoc at MIT and is now a postdoc at Harvard University. "That idea is that precipitation really should affect how quickly rivers cut through rock, which has many implications for how landscapes evolve."

Ferrier published the results of the study this week in the journal Nature. The study's co-authors are MIT graduate student Kimberly Huppert and Taylor Perron, the Cecil and Ida Green Assistant Professor of Geology in EAPS.

Rain versus the volcano

According to the researchers, Kauai's steep rainfall gradient and uniform volcanic rock make it an "exceptional natural laboratory" for testing the relationship between precipitation and erosion. Wind patterns sweep rain clouds from the ocean toward the peak of the island's volcano, where they rain out most of their moisture before passing over the rest of the island. As a result, annual rainfall is highest in the island's center, with a dramatic drop-off toward the coasts, and is also higher on the side of the island that faces the wind. If rainfall indeed has an effect on erosion, the team reasoned, then the island's erosion rates should exhibit a similarly dramatic pattern.

To test their theory, the researchers first looked at Kauai's current topography, which features large canyons funneling into the middle of the island, with smaller valleys on the outskirts. They then created a map of what the island looked like when it first formed more than 4 million years ago, before erosion altered its surface. To do that, the researchers identified gently sloping, nearly planar surfaces around the island that likely are remnants of the volcano's original terrain. They then used a simple mathematical equation to, in essence, stretch the remnant surfaces together into a roughly conical shape — what Kauai's topography likely resembled when the island first formed.

Ferrier and his colleagues then measured the difference between the modern topography and this reconstructed topography to estimate the amount of rock eroded over time — and divided this difference by the age of the uppermost volcanic flows to calculate an erosion rate. The researchers performed this exercise for more than 13,000 locations along 32 rivers throughout the island, measuring the erosion rates along each river. They then plotted these erosion rates against precipitation rates across the island and found that, after correcting for each river's steepness and the size of its drainage basin, rivers that received more rainfall eroded the land faster than those with less rain.

Feeding the flow

The researchers compared their measured erosion rates to a mathematical equation widely used to predict a river's erosion rate. This equation attributes the erosion rate to the river's steepness and the rate of flow through its channel, but the flow rate is typically assumed to depend only on the size of the river's drainage basin, ignoring spatial differences in rainfall. Other factors that might influence erosion rate, but which are not explicitly included in this equation, include the type of rock being eroded and the kinds of vegetation in the area.

Ferrier used measured precipitation rates to calculate the flow rate at every point along each river, and found a strong correlation between the equation's predicted erosion rates and the measured erosion rates — a result that indicates how much precipitation really matters when it comes to predicting how a landscape will erode.

"This is exciting because it shows that some bold ideas that have been proposed about landscapes are probably right," Perron says. "For example, if it rains more on one side of a mountain range, it might actually make the mountain range asymmetric and change its width. Just by changing atmospheric processes, you can change how the solid Earth is deforming. Now there is some empirical support for these ideas."

Written by Jennifer Chu, MIT News Office

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu

More articles from Earth Sciences:

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

nachricht Root exudates affect soil stability, water repellency
18.04.2018 | American Society of Agronomy

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>