Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists say climate change mitigation strategies ignore carbon cycling processes of inland waters

02.09.2009
In the paper, The Boundless Carbon Cycle, published in the September issue of Nature Geoscience, scientists from the University of Vienna, Uppsala University in Sweden, University of Antwerp, and the U.S. based Stroud™ Water Research Center argue that current international strategies to mitigate manmade carbon emissions and address climate change have overlooked a critical player - inland waters.

Streams, rivers, lakes, reservoirs, and wetlands play an important role in the carbon cycle that is unaccounted for in conventional carbon cycling models. The commentary comes just months before COP15, the December 2009 UN Climate Change Conference in Copenhagen where representatives from 192 countries will gather to decide upon a 2012 climate agreement that will succeed the "Kyoto protocol."

Dr. Tom J. Battin of the department of Freshwater Ecology at the University of Vienna and lead author of the paper states that "While inland waters represent only 1% of the Earth's surface, their contribution to the carbon cycle is disproportionately large, underestimated, and not recognized within the models on which the Kyoto protocol was based."

The team of scientists points out that all current global carbon models consider inland waters static conduits that transfer carbon from the continents to the oceans. In reality, inland waters are dynamic ecosystems with the potential to alter the fates of terrestrial carbon delivered to them including: burial in sediments leading to long-term storage or sequestration; and metabolism in rivers and subsequent outgassing of respired carbon dioxide to the atmosphere.

"Twenty percent of the continental carbon sequestration actually occurs as burial in inland water sediments," said Dr. Lars Tranvik, Professor of Limnology at Uppsala University in Sweden.

"River outgassing of respired carbon, contributes carbon to the atmosphere in an amount equivalent to 13% of annual fossil fuel burning," said Dr. Anthony K. Aufdenkampe, a scientist at the Stroud Water Research Center. Because the amount of atmospheric carbon is well known and conservation of matter requires a balanced global carbon budget, this previously unaccounted for source of carbon to the atmosphere implies the existence of an additional continental carbon sink such as higher rates of biomass accrual in forests. "A larger accumulation of carbon in forest ecosystems that could offset the outgassing from rivers would be more consistent with current independently-derived estimates of carbon sequestration on the continents," said Dr. Sebastian Luyssaert of the department of Biology at University of Antwerp in Belgium.

The authors feel that a Boundless Carbon Cycle – that accounts for carbon transfers between the land-freshwater boundary, the freshwater-atmosphere boundary, and regional boundaries within continents – presents opportunities and challenges for scientists and policy makers alike. They stress the need for collaborative scientific investigations augmented by new observatories and experimental platforms for long-term research to improve insights into carbon cycles across terrestrial and aquatic ecosystems. For policy makers, the authors note that riverine transport presents a book keeping challenge as carbon in rivers that escapes burial or outgassing flows downstream, traversing geographic regions and political boundaries, and thus altering regionally based carbon accounts.

About Stroud Water Research Center

The Stroud Water Research Center seeks to advance knowledge and stewardship of fresh water through research, education and global outreach and to help businesses, landowners, policy makers and individuals make informed decisions that affect water quality and availability around the world. The Stroud Water Research Center is an independent, 501(c)(3) not-for-profit organization. For more information, please visit: www.stroudcenter.org

About University of Vienna

The University of Vienna is the largest Austrian research institution. Approximately 6,500 scientists and academics guarantee its outstanding performance in research and teaching. The 15 Faculties and three Centres are dedicated to both basic and applied research. For more information, please visit: http://www.univie.ac.at/research/?L=2

Liz Brooking | EurekAlert!
Further information:
http://www.stroudcenter.org

More articles from Earth Sciences:

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Mars’ atmosphere well protected from the solar wind
08.12.2017 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>