Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists say climate change mitigation strategies ignore carbon cycling processes of inland waters

In the paper, The Boundless Carbon Cycle, published in the September issue of Nature Geoscience, scientists from the University of Vienna, Uppsala University in Sweden, University of Antwerp, and the U.S. based Stroud™ Water Research Center argue that current international strategies to mitigate manmade carbon emissions and address climate change have overlooked a critical player - inland waters.

Streams, rivers, lakes, reservoirs, and wetlands play an important role in the carbon cycle that is unaccounted for in conventional carbon cycling models. The commentary comes just months before COP15, the December 2009 UN Climate Change Conference in Copenhagen where representatives from 192 countries will gather to decide upon a 2012 climate agreement that will succeed the "Kyoto protocol."

Dr. Tom J. Battin of the department of Freshwater Ecology at the University of Vienna and lead author of the paper states that "While inland waters represent only 1% of the Earth's surface, their contribution to the carbon cycle is disproportionately large, underestimated, and not recognized within the models on which the Kyoto protocol was based."

The team of scientists points out that all current global carbon models consider inland waters static conduits that transfer carbon from the continents to the oceans. In reality, inland waters are dynamic ecosystems with the potential to alter the fates of terrestrial carbon delivered to them including: burial in sediments leading to long-term storage or sequestration; and metabolism in rivers and subsequent outgassing of respired carbon dioxide to the atmosphere.

"Twenty percent of the continental carbon sequestration actually occurs as burial in inland water sediments," said Dr. Lars Tranvik, Professor of Limnology at Uppsala University in Sweden.

"River outgassing of respired carbon, contributes carbon to the atmosphere in an amount equivalent to 13% of annual fossil fuel burning," said Dr. Anthony K. Aufdenkampe, a scientist at the Stroud Water Research Center. Because the amount of atmospheric carbon is well known and conservation of matter requires a balanced global carbon budget, this previously unaccounted for source of carbon to the atmosphere implies the existence of an additional continental carbon sink such as higher rates of biomass accrual in forests. "A larger accumulation of carbon in forest ecosystems that could offset the outgassing from rivers would be more consistent with current independently-derived estimates of carbon sequestration on the continents," said Dr. Sebastian Luyssaert of the department of Biology at University of Antwerp in Belgium.

The authors feel that a Boundless Carbon Cycle – that accounts for carbon transfers between the land-freshwater boundary, the freshwater-atmosphere boundary, and regional boundaries within continents – presents opportunities and challenges for scientists and policy makers alike. They stress the need for collaborative scientific investigations augmented by new observatories and experimental platforms for long-term research to improve insights into carbon cycles across terrestrial and aquatic ecosystems. For policy makers, the authors note that riverine transport presents a book keeping challenge as carbon in rivers that escapes burial or outgassing flows downstream, traversing geographic regions and political boundaries, and thus altering regionally based carbon accounts.

About Stroud Water Research Center

The Stroud Water Research Center seeks to advance knowledge and stewardship of fresh water through research, education and global outreach and to help businesses, landowners, policy makers and individuals make informed decisions that affect water quality and availability around the world. The Stroud Water Research Center is an independent, 501(c)(3) not-for-profit organization. For more information, please visit:

About University of Vienna

The University of Vienna is the largest Austrian research institution. Approximately 6,500 scientists and academics guarantee its outstanding performance in research and teaching. The 15 Faculties and three Centres are dedicated to both basic and applied research. For more information, please visit:

Liz Brooking | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>