Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists say climate change mitigation strategies ignore carbon cycling processes of inland waters

02.09.2009
In the paper, The Boundless Carbon Cycle, published in the September issue of Nature Geoscience, scientists from the University of Vienna, Uppsala University in Sweden, University of Antwerp, and the U.S. based Stroud™ Water Research Center argue that current international strategies to mitigate manmade carbon emissions and address climate change have overlooked a critical player - inland waters.

Streams, rivers, lakes, reservoirs, and wetlands play an important role in the carbon cycle that is unaccounted for in conventional carbon cycling models. The commentary comes just months before COP15, the December 2009 UN Climate Change Conference in Copenhagen where representatives from 192 countries will gather to decide upon a 2012 climate agreement that will succeed the "Kyoto protocol."

Dr. Tom J. Battin of the department of Freshwater Ecology at the University of Vienna and lead author of the paper states that "While inland waters represent only 1% of the Earth's surface, their contribution to the carbon cycle is disproportionately large, underestimated, and not recognized within the models on which the Kyoto protocol was based."

The team of scientists points out that all current global carbon models consider inland waters static conduits that transfer carbon from the continents to the oceans. In reality, inland waters are dynamic ecosystems with the potential to alter the fates of terrestrial carbon delivered to them including: burial in sediments leading to long-term storage or sequestration; and metabolism in rivers and subsequent outgassing of respired carbon dioxide to the atmosphere.

"Twenty percent of the continental carbon sequestration actually occurs as burial in inland water sediments," said Dr. Lars Tranvik, Professor of Limnology at Uppsala University in Sweden.

"River outgassing of respired carbon, contributes carbon to the atmosphere in an amount equivalent to 13% of annual fossil fuel burning," said Dr. Anthony K. Aufdenkampe, a scientist at the Stroud Water Research Center. Because the amount of atmospheric carbon is well known and conservation of matter requires a balanced global carbon budget, this previously unaccounted for source of carbon to the atmosphere implies the existence of an additional continental carbon sink such as higher rates of biomass accrual in forests. "A larger accumulation of carbon in forest ecosystems that could offset the outgassing from rivers would be more consistent with current independently-derived estimates of carbon sequestration on the continents," said Dr. Sebastian Luyssaert of the department of Biology at University of Antwerp in Belgium.

The authors feel that a Boundless Carbon Cycle – that accounts for carbon transfers between the land-freshwater boundary, the freshwater-atmosphere boundary, and regional boundaries within continents – presents opportunities and challenges for scientists and policy makers alike. They stress the need for collaborative scientific investigations augmented by new observatories and experimental platforms for long-term research to improve insights into carbon cycles across terrestrial and aquatic ecosystems. For policy makers, the authors note that riverine transport presents a book keeping challenge as carbon in rivers that escapes burial or outgassing flows downstream, traversing geographic regions and political boundaries, and thus altering regionally based carbon accounts.

About Stroud Water Research Center

The Stroud Water Research Center seeks to advance knowledge and stewardship of fresh water through research, education and global outreach and to help businesses, landowners, policy makers and individuals make informed decisions that affect water quality and availability around the world. The Stroud Water Research Center is an independent, 501(c)(3) not-for-profit organization. For more information, please visit: www.stroudcenter.org

About University of Vienna

The University of Vienna is the largest Austrian research institution. Approximately 6,500 scientists and academics guarantee its outstanding performance in research and teaching. The 15 Faculties and three Centres are dedicated to both basic and applied research. For more information, please visit: http://www.univie.ac.at/research/?L=2

Liz Brooking | EurekAlert!
Further information:
http://www.stroudcenter.org

More articles from Earth Sciences:

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

nachricht Mars volcano, Earth's dinosaurs went extinct about the same time
21.03.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>