Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers scientists help create world's largest coral gene database

24.05.2016

'Genetic toolkit' will help shed light on which species survive climate change

Coral reefs - stunning, critical habitats for an enormous array of prized fish and other species - have survived five major extinction events over the last 250 million years.


A coral reef in Komodo National Park in Eastern Indonesia

Credit: Michael Lesser, University of New Hampshire

Now, an international team of scientists led by Rutgers faculty has conducted the world's most comprehensive analysis of coral genes, focusing on how their evolution has allowed corals to interact with and adapt to the environment. A second study led by Rutgers researchers with colleagues at the University of Hawaii shows -- for the first time -- how stony corals create their hard skeletons, using proteins as key ingredients.

"There are a few key genes in corals that allow them to build this house that laid down the foundation for many, many thousands of years of corals," said Debashish Bhattacharya, a professor in the Department of Ecology, Evolution and Natural Resources in the School of Environmental and Biological Sciences at Rutgers. "It couldn't be any more fundamental to ocean ecosystems."

"I think one of the more interesting aspects of these data will be to understand which coral species may become winners or losers in the face of anthropogenic climate change - what makes them tougher and what makes them susceptible to changes in temperature, changes in ocean acidification," said Paul Falkowski, a professor who leads the Environmental Biophysics and Molecular Ecology Laboratory at Rutgers.

The coral gene database study, led by Bhattacharya and Falkowski, was published today in the journal eLife. The study stems from an international coral genomics symposium and workshop held at Rutgers in February 2014 that was funded by the National Science Foundation. The stony coral study was published in the Proceedings of the Royal Society B: Biological Sciences last month.

Nearly all corals are colonial organisms that consist of as many as hundreds of thousands of animals called polyps. Types of corals include stony, shallow-water species that build reefs, soft corals and deep-water corals that live in dark cold waters, according to the National Oceanic and Atmospheric Administration.

Corals face four major threats from humans: Destruction of reefs by grenades and poison used to kill fish for food; nutrient pollution, usually from sewage or agricultural runoff, that overstimulates harmful algae; increased heat in the upper ocean, which causes most coral bleaching that can kill reefs; and acidification of the ocean, according to Falkowski.

"Corals are the most diverse marine ecosystems on the planet," he said. "But their value to marine ecosystems -- and to our own use of marine resources -- is very underappreciated."

Recent aerial and underwater surveys have found that 93 percent of the Great Barrier Reef off Queensland in Australia has endured very severe, moderate or at least some coral bleaching this year, according to the ARC Centre of Excellence for Coral Reef Studies in Australia. The reef, a world-renowned tourist attraction, is about 1,430 miles long.

Elevated sea temperatures from global warming can cause corals to expel tiny, colorful algae, according to the center. Corals turn translucent and white when they lose the algae. Mildly bleached corals can recover if the temperature drops and algae can recolonize them. If not, corals may die.

At Rutgers two years ago, leaders in the field of coral biology and genomics met to plan an analysis of 20 coral genomic datasets. The goal was to provide a comprehensive understanding of coral evolution since the organisms appeared on Earth 525 million years ago. The coral database, which includes corals in tropical waters, has been posted on the comparative.reefgenomics.org website to foster growth in this important area of research.

The eLife study's major advances include explaining the origin and evolution of the unique genes involved in the creation of hard skeletons by corals. The study also serves as a novel toolkit compared with the genes of humans, shellfish and other animals with hard skeletons.

Bhattacharya and coauthors found dozens of genes that allow corals to coordinate their response to changes in temperature, light and pH (acidity vs. alkalinity) and deal with stress triggered by the algae that live with them and exposure to high levels of light.

Surprisingly, some of these stress-related genes are of bacterial origin and were acquired to help corals survive. An intriguing theory that arose from the study is that the vast genetic repertoire of corals may help them adapt to changing ocean conditions.

The study in the Proceedings of the Royal Society B: Biological Sciences -- led by former Rutgers Department of Marine and Coastal Sciences post-doctoral fellow Tali Mass -- explains how stony corals make their hard, calcium carbonate skeletons. It also explains how this process might be affected as the oceans become more acidic due to climate change. Acidity increases as oceans are exposed to higher concentrations of carbon dioxide, the main greenhouse gas and cause of climate change, in the atmosphere.

"The aragonite (hard skeleton) is not just minerals," Bhattacharya said. "The proteins are very important for giving it shape and making it stable."

Falkowski said the study serves as a model for understanding how we can regenerate bone. "There are amazing parallels between the production of the skeleton of coral and production of bone," he said.

Media Contact

Todd B. Bates
tbates@ucm.rutgers.edu
848-932-0550

 @RutgersU

http://www.rutgers.edu 

Todd B. Bates | EurekAlert!

Further reports about: Bhattacharya Reef animals coral bleaching corals ecosystems marine ecosystems skeletons

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>