Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising permafrost temperatures raise emission of the climate relevant trace gas methane

02.04.2009
Investigations of the Alfred Wegener Institute show that methane producing microorganisms react to climate changes

Higher temperatures in Arctic permafrost soils alter the community of methane producing microorganisms and lead to an increased emission of methane. Microbiologists from the Alfred Wegener Institute come to this conclusion in the current issue of the periodical "Environmental Microbiology".

The scientists were able to examine permafrost from the ground of the Laptev Sea, a shallow shelf sea close to the coast of Siberia, for the first time. Caused by overflooding with relatively warm sea water, this so-called "submarine permafrost" is about 10° C warmer than the permafrost on land. It is therefore particularly suited to monitor changes in permafrost soils caused by continuing heating of the earth's atmosphere.

"If the permafrost soils grow warm or even thaw, dramatic consequences for worldwide climate events might occur," illustrates the microbiologist Dr. Dirk Wagner from the Potsdam Research Unit of the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association the importance of permafrost research. "They cover about 25% of the earth's land area and store huge amounts of organic carbon."

Under the exclusion of oxygen and therefore under conditions typical of permafrost due to water saturation, the climate relevant trace gas methane is generated by decomposition of organic carbon. Special microorganisms are responsible for the generation of methane, called methanogenic archaea. "How much carbon is transformed and how much carbon is accordingly generated depends on the metabolic activity of the organisms and on the composition of the microbial community", explains Wagner. "We are therefore engaged in the question how these two parameters change under rising temperatures in permafrost."

The researchers were already able to show in former studies that microorganisms generate methane even in deeply frozen permafrost layers of about -7° C. If these temperatures are experimentally increased by some degrees, the organisms' metabolic activity increases and thus also the production of methane in permafrost. It has so far not been clarified, however, whether the community of methane producing microorganisms would be able to permanently adapt to higher temperatures in permafrost soils. The researchers from Potsdam were able to provide evidence by their comparison of terrestrial and submarine permafrost layers.

Submarine permafrost has developed in a former landmass which was flooded due to the raised main sea level after the last glacial. It is therefore originally a terrestrial permafrost deposits. In contrast to current terrestrial permafrost with a mean temperature of -12° C, submarine permafrost has already been warmed to a temperature of -2° C. By comparing the two communities of microorganisms generating methane in both permafrost regions, Wagner and his team were able to show that the composition of methane producing microorganisms in submarine permafrost is clearly distinguishable from terrestrial permafrost. The community is therefore able to adapt well and permanently to rising temperatures.

"The studies we were conducting during the last ten years in the vicinity of the Russian-German research station Samoilov in the Siberian Arctic show clearly", summarises Wagner the insights of his long years of work "that the communities of microorganisms react flexible to climate change. Even if the soil is still deeply frozen, the metabolic activity of methane producing microbes is increased with rising temperatures. It is definite evidence for us that the atmospheric warming we can observe leads to an increased emission of the climate relevant trace gas methane in earth's vast permafrost regions even today."

The Alfred Wegener Institute carries out research in the Arctic and Antarctic as well as in the high and mid latitude oceans. The institute coordinates German polar research and provides international science with important infrastructure, e.g. the research icebreaker Polarstern and research stations in the Arctic and Antarctic. The Alfred Wegener Institute is one of 15 research centres within the Helmholtz Association, Germany's largest scientific organization.

Margarete Pauls | idw
Further information:
http://www.awi.de/

More articles from Earth Sciences:

nachricht Arctic melt ponds form when meltwater clogs ice pores
24.01.2017 | University of Utah

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>