Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rising permafrost temperatures raise emission of the climate relevant trace gas methane

Investigations of the Alfred Wegener Institute show that methane producing microorganisms react to climate changes

Higher temperatures in Arctic permafrost soils alter the community of methane producing microorganisms and lead to an increased emission of methane. Microbiologists from the Alfred Wegener Institute come to this conclusion in the current issue of the periodical "Environmental Microbiology".

The scientists were able to examine permafrost from the ground of the Laptev Sea, a shallow shelf sea close to the coast of Siberia, for the first time. Caused by overflooding with relatively warm sea water, this so-called "submarine permafrost" is about 10° C warmer than the permafrost on land. It is therefore particularly suited to monitor changes in permafrost soils caused by continuing heating of the earth's atmosphere.

"If the permafrost soils grow warm or even thaw, dramatic consequences for worldwide climate events might occur," illustrates the microbiologist Dr. Dirk Wagner from the Potsdam Research Unit of the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association the importance of permafrost research. "They cover about 25% of the earth's land area and store huge amounts of organic carbon."

Under the exclusion of oxygen and therefore under conditions typical of permafrost due to water saturation, the climate relevant trace gas methane is generated by decomposition of organic carbon. Special microorganisms are responsible for the generation of methane, called methanogenic archaea. "How much carbon is transformed and how much carbon is accordingly generated depends on the metabolic activity of the organisms and on the composition of the microbial community", explains Wagner. "We are therefore engaged in the question how these two parameters change under rising temperatures in permafrost."

The researchers were already able to show in former studies that microorganisms generate methane even in deeply frozen permafrost layers of about -7° C. If these temperatures are experimentally increased by some degrees, the organisms' metabolic activity increases and thus also the production of methane in permafrost. It has so far not been clarified, however, whether the community of methane producing microorganisms would be able to permanently adapt to higher temperatures in permafrost soils. The researchers from Potsdam were able to provide evidence by their comparison of terrestrial and submarine permafrost layers.

Submarine permafrost has developed in a former landmass which was flooded due to the raised main sea level after the last glacial. It is therefore originally a terrestrial permafrost deposits. In contrast to current terrestrial permafrost with a mean temperature of -12° C, submarine permafrost has already been warmed to a temperature of -2° C. By comparing the two communities of microorganisms generating methane in both permafrost regions, Wagner and his team were able to show that the composition of methane producing microorganisms in submarine permafrost is clearly distinguishable from terrestrial permafrost. The community is therefore able to adapt well and permanently to rising temperatures.

"The studies we were conducting during the last ten years in the vicinity of the Russian-German research station Samoilov in the Siberian Arctic show clearly", summarises Wagner the insights of his long years of work "that the communities of microorganisms react flexible to climate change. Even if the soil is still deeply frozen, the metabolic activity of methane producing microbes is increased with rising temperatures. It is definite evidence for us that the atmospheric warming we can observe leads to an increased emission of the climate relevant trace gas methane in earth's vast permafrost regions even today."

The Alfred Wegener Institute carries out research in the Arctic and Antarctic as well as in the high and mid latitude oceans. The institute coordinates German polar research and provides international science with important infrastructure, e.g. the research icebreaker Polarstern and research stations in the Arctic and Antarctic. The Alfred Wegener Institute is one of 15 research centres within the Helmholtz Association, Germany's largest scientific organization.

Margarete Pauls | idw
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>