Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising permafrost temperatures raise emission of the climate relevant trace gas methane

02.04.2009
Investigations of the Alfred Wegener Institute show that methane producing microorganisms react to climate changes

Higher temperatures in Arctic permafrost soils alter the community of methane producing microorganisms and lead to an increased emission of methane. Microbiologists from the Alfred Wegener Institute come to this conclusion in the current issue of the periodical "Environmental Microbiology".

The scientists were able to examine permafrost from the ground of the Laptev Sea, a shallow shelf sea close to the coast of Siberia, for the first time. Caused by overflooding with relatively warm sea water, this so-called "submarine permafrost" is about 10° C warmer than the permafrost on land. It is therefore particularly suited to monitor changes in permafrost soils caused by continuing heating of the earth's atmosphere.

"If the permafrost soils grow warm or even thaw, dramatic consequences for worldwide climate events might occur," illustrates the microbiologist Dr. Dirk Wagner from the Potsdam Research Unit of the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association the importance of permafrost research. "They cover about 25% of the earth's land area and store huge amounts of organic carbon."

Under the exclusion of oxygen and therefore under conditions typical of permafrost due to water saturation, the climate relevant trace gas methane is generated by decomposition of organic carbon. Special microorganisms are responsible for the generation of methane, called methanogenic archaea. "How much carbon is transformed and how much carbon is accordingly generated depends on the metabolic activity of the organisms and on the composition of the microbial community", explains Wagner. "We are therefore engaged in the question how these two parameters change under rising temperatures in permafrost."

The researchers were already able to show in former studies that microorganisms generate methane even in deeply frozen permafrost layers of about -7° C. If these temperatures are experimentally increased by some degrees, the organisms' metabolic activity increases and thus also the production of methane in permafrost. It has so far not been clarified, however, whether the community of methane producing microorganisms would be able to permanently adapt to higher temperatures in permafrost soils. The researchers from Potsdam were able to provide evidence by their comparison of terrestrial and submarine permafrost layers.

Submarine permafrost has developed in a former landmass which was flooded due to the raised main sea level after the last glacial. It is therefore originally a terrestrial permafrost deposits. In contrast to current terrestrial permafrost with a mean temperature of -12° C, submarine permafrost has already been warmed to a temperature of -2° C. By comparing the two communities of microorganisms generating methane in both permafrost regions, Wagner and his team were able to show that the composition of methane producing microorganisms in submarine permafrost is clearly distinguishable from terrestrial permafrost. The community is therefore able to adapt well and permanently to rising temperatures.

"The studies we were conducting during the last ten years in the vicinity of the Russian-German research station Samoilov in the Siberian Arctic show clearly", summarises Wagner the insights of his long years of work "that the communities of microorganisms react flexible to climate change. Even if the soil is still deeply frozen, the metabolic activity of methane producing microbes is increased with rising temperatures. It is definite evidence for us that the atmospheric warming we can observe leads to an increased emission of the climate relevant trace gas methane in earth's vast permafrost regions even today."

The Alfred Wegener Institute carries out research in the Arctic and Antarctic as well as in the high and mid latitude oceans. The institute coordinates German polar research and provides international science with important infrastructure, e.g. the research icebreaker Polarstern and research stations in the Arctic and Antarctic. The Alfred Wegener Institute is one of 15 research centres within the Helmholtz Association, Germany's largest scientific organization.

Margarete Pauls | idw
Further information:
http://www.awi.de/

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>