Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Study Impacts of Coal Mining on Water Resources

31.08.2009
The Virginia Water Resources Research Center at Virginia Tech has embarked on two new research projects in headwater streams affected by coal mining in southwestern Virginia.

As the federal government announces new plans to protect water resources, these research efforts are underway to provide objective scientific information to policy makers and to those involved in the debate surrounding mountaintop-removal and other forms of coal mining.

Coal mining plays an integral role in the economy and culture of the Appalachian coalfields in Virginia as well as in Kentucky, Ohio, Pennsylvania, Tennessee, and West Virginia. In recent years, developments in mining technology and economics have led to an expansion of the scope and scale of coal mining operations throughout the Appalachians. The practice known as “mountaintop removal” mining, for example, removes the tops of mountains to expose underlying coal seams.

Impacts of this practice, however, include eliminating forests and generating so-called “valley fills”: filling headwater streams with the displaced rock, soil, and other debris that was blasted away to expose the coal. All coal mining operations are subject to the requirements of federal laws, such as the Clean Water Act and the Surface Mining Control and Reclamation Act, which require land reclamation and water quality protection.

In March, the U.S. EPA halted several mining permit applications in order to review the water-resources impacts of such permits. In June, the Obama administration announced an unprecedented interagency action plan to reduce environmental impacts of mountaintop coal mining.

These and other developments—such as climate-change legislation now in the Congress—have increased the focus on issues related to coal mining, including U.S. dependence on foreign oil, jobs, electricity prices, environmental impacts, and community impacts.

“With so much at stake, there is a pressing need to base policy decisions on sound science, including an improved understanding of the impacts of mountaintop-removal mining on water resources,” stated Stephen Schoenholtz, director of the Virginia Water Resources Research Center (http://www.vwrrc.vt.edu/) at Virginia Tech. “This is why this research is so important.”

One project, funded by Virginia Tech’s Institute for Critical Technology and Applied Science and the Powell River Project, is evaluating measurements of hydrological and ecological functions in streams undergoing restoration activities following coal-mining impacts. Efforts to restore stream structure and function following coal mining are relatively recent (mostly within the past five years). Many questions have been raised as to effectiveness of these practices, but little research has been conducted in effort to answer them.

A second project, funded by the Virginia Department of Environmental Quality, the Virginia Department of Mines, Minerals and Energy, and Virginia Tech’s Powell River Project, is investigating associations between total dissolved solids (TDS) and aquatic benthic macroinvertebrates (insects and other organisms that live on stream bottoms). High levels of TDS are often found in stream water originating from areas exposed to coal mining, and benthic macroinvertebrates are a key indicator of stream health. [For more information, see the June 2009 issue of the Virginia Water Central newsletter: http://www.vwrrc.vt.edu/watercentral.html]

Patrick Fay | Newswise Science News
Further information:
http://www.vwrrc.vt.edu/
http://www.vwrrc.vt.edu/watercentral.html

More articles from Earth Sciences:

nachricht International team reports ocean acidification spreading rapidly in Arctic Ocean
28.02.2017 | University of Delaware

nachricht Secrets of the calcerous ooze revealed
28.02.2017 | Washington University in St. Louis

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>