Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find wildfire signatures in cave formations for the first time

21.07.2016

When mineral-rich water drips from a cave’s ceiling over centuries and millennia, it forms rocky cones that hold clues to the Earth’s past climate. Now, researchers in Australia and the UK have found that these structures can also help trace past wildfires that burned above the cave. Their research is published today (21 July) in Hydrology and Earth System Sciences, an open access journal of the European Geosciences Union (EGU).

Pauline Treble, a researcher at the Australian Nuclear Science and Technology Organisation and the University of New South Wales, Sydney, first got interested in Yonderup Cave as an archive of past climate. She wanted to find out whether this shallow cave system in southwest Australia was a good site to reveal past changes in rainfall and temperatures.


Stalactites and stalagmites in Yonderup cave

(Credit: Andy Baker)

“We monitored two drips in the cave expecting to see responses in the data that we could attribute to climate. But the results were surprising,” says Treble. The chemistry of the dripwater, and how it changed over time, was different in the two sites. The data could not be showing a regional climate change at the surface, but rather a local change that affected the ground above the two sites in different ways.

“This is when we started to consider whether the intense wildfire that had occurred six months before monitoring started was responsible for the inconsistent data,” Treble explains.

Treble’s student Gurinder Nagra, from the University of New South Wales, was excited by the idea of finding traces of wildfires in cave dripwater. “Not only does this open up a new avenue for the fire community, but it could hold the key to our understanding of fire and climate in the past, and how this influences our warming world,” he says.

But the signal that wildfires leave in cave formations can also present a problem, because it is remarkably similar to the signal for a change in climate.

Stalagmites (which grow from the ground up) and stalactites (which hang from the ceiling) form when water at the surface seeps through the soil and drips into underground chambers over hundreds or thousands of years. The dripwater contains minerals, which can gradually accumulate to form icicle-like rocky structures that preserve environmental information from the water within its growth layers.

By looking into the chemistry of these growth layers, scientists can find clues about how rainfall and temperature were changing above ground when the water dripped into the cave. Due to the way stalagmites and stalactites grow, the layers in the middle of these structures preserve older environmental information, while those closer to the surface hold clues to the more recent past.

Oxygen is one of the key elements scientists look at to track past climate change. Specifically, they measure changes in the ratio (noted d18O) of two oxygen isotopes: the heavier 18O, which takes more energy to evaporate, and the lighter 16O. Roughly speaking, a higher ratio signals warmer temperatures and less rainfall.

At Yonderup Cave, the researchers collected dripwater samples from two sites from August 2005 to March 2011 and analysed them for d18O, as well as for trace metals such as magnesium. They then compared the oxygen isotope ratio in Yonderup dripwater with that predicted by a model (which simulated the dripwater d18O based on measurements of rainwater d18O), as well as that measured at a different cave in the region. They found that the oxygen isotope ratio in Yonderup dripwater was 2‰ (2 parts per thousand) higher than expected.

“This value means that the water was enriched in the heavier 18O isotope by two-parts per thousand,” Treble explains. “This may not sound like much, but if we were interpreting this change in a stalagmite record [of past climate], it would be equivalent to some of the largest interpreted climatic changes seen in the Quaternary record [the last 2.6 million years].”

Treble says the results could have implications for interpreting d18O in fire-prone regions, such as Australia or the southern Mediterranean. A change that could be due to a local wildfire in the land above the cave could be wrongly attributed to a change in regional or global climate.

The Hydrology and Earth System Sciences study highlights the need to carefully interpret dripwater cave data, and to also look into changes in its trace metals, as opposed to only d18O, when analysing it. But it also shows that we can learn more about the Earth’s past than we previously thought. “Our results show for the first time that wildfire changes cave dripwater chemistry, and this chemistry will be preserved in stalagmites,” says Nagra.

# # #

Please mention the name of the publication (Hydrology and Earth System Sciences) if reporting on this story and, if reporting online, include a link to the paper (TBA) or to the journal website (http://www.hydrology-and-earth-system-sciences.net).

MORE INFORMATION
This research is presented in the paper ‘A post-wildfire response in cave dripwater chemistry’ to appear in the EGU open access journal Hydrology and Earth System Sciences on 21 July 2016.

The scientific article is available online, free of charge, from the publication date onwards, at http://www.hydrol-earth-syst-sci-discuss.net/hess-2016-1/ (this URL currently links to the non-peer-reviewed version of the paper, but will redirect to the peer-reviewed paper page after publication). A pre-print version of the final paper is available for download at http://www.egu.eu/news/249/fire-clues-in-cave-dripwater-researchers-find-wildfir....

Citation: TBA

The team is composed of Gurinder Nagra (Connected Water Initiative Research Centre, University of New South Wales, Sydney, Australia [CWI-UNSW]), Pauline C. Treble (Institute for Environmental Research, Australian Nuclear Science and Technological Organisation, Lucas Heights, Australia & CWI-UNSW), Martin S. Andersen (CWI-UNSW), Ian J. Fairchild (School of Geography, Earth and Environmental Sciences, University of Birmingham, UK), Katie Coleborn (CWI-UNSW) and Andy Baker (CWI-UNSW).

The European Geosciences Union (EGU, http://www.egu.eu/) is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 17 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The EGU 2017 General Assembly is taking place in Vienna, Austria, from 23 to 28 April 2017. For information about meeting and press registration, please check http://media.egu.eu closer to the time of the conference, or follow the EGU on Twitter (http://twitter.com/EuroGeosciences) and Facebook (http://www.facebook.com/EuropeanGeosciencesUnion).

If you wish to receive our press releases via email, please use the Press Release Subscription Form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) in advance of public dissemination.

Hydrology and Earth System Sciences (HESS) is an international two-stage open-access journal for the publication of original research in hydrology, placed within a holistic Earth system science context. HESS encourages and supports fundamental and applied research that seeks to understand the interactions between water, earth, ecosystems, and humans. A multi-disciplinary approach is encouraged that enables a broadening of the hydrologic perspective and the advancement of hydrologic science through the integration with other cognate sciences, and the cross-fertilization across disciplinary boundaries.

CONTACTS
Gurinder Nagra
Honours Candidate at the University of New South Wales (UNSW)
Sydney, Australia
Email: g.nagra@unsw.edu.au
Twitter: @gurinder_nagra

Pauline Treble
Isotope Palaeoclimateologist at the Australian Nuclear Science and Technological Organisation & UNSW
Lucas Heights, Australia
Phone: +61 2 9717 9356
Email: pauline.treble@ansto.gov.au

Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Phone: +49-89-2180-6703
Email: media@egu.eu
EGU on Twitter: @EuroGeosciences

Steve Offner
Communications Manager; Editor, UNSW Magazine
Media Office
UNSW Australia
Phone: +61 2 9385 1583 or +61 424 580 208
Email: s.offner@unsw.edu.au

Weitere Informationen:

http://www.egu.eu/news/249/fire-clues-in-cave-dripwater-researchers-find-wildfir... -- HTML version of this release, including the scientific study and accompanying images
http://www.hydrology-and-earth-system-sciences.net -- Journal – Hydrology and Earth System Sciences

Dr. Bárbara Ferreira | European Geosciences Union

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>