Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find microbial heat islands in the desert

20.01.2016

Deserts are often thought of as barren places that are left exposed to the extremes of heat and cold and where not much is afoot. But that view is being altered as new research keeps revealing the intricate ecological dynamics of deserts as they change responding to the elements.

New research from Arizona State University now reveals how microbes can significantly warm the desert surface by darkening it, much in the same way that dark clothes will make you feel warmer in sunlight. These desert-darkening organisms make a living basking in the sun and form a mantle that covers the landscape.


The desert outside Chandler, Ariz., shows a darkening of the biocrust (left) over its surface.

Credit: Ferran Garcia-Pichel, Arizona State University

Such mantles, called biological soil crusts, or biocrusts, provide important ecosystem services, like fighting erosion and preventing dust storms, or fertilizing the ground with carbon and nitrogen.

The new ASU research shows how the biocrust microorganisms, in an effort to protect themselves from harmful ultraviolet rays in the strong desert sun, produce and lay down so much sunscreen as to noticeably darken the soil, changing the reflectivity of the desert surface as they spread across the land.

The research is outlined in the article "Bacteria increase arid-land soil surface temperature through the production of sunscreens," published in the Jan. 20, 2016 issue of Nature Communications. It was written by Estelle Couradeau, a Marie Curie postdoctoral fellow at Arizona State University, and Ferran Garcia-Pichel, an ASU professor and Dean of Natural Sciences in the College of Liberal Arts and Sciences.

It is part of a long-term institutional collaboration with Lawrence Berkeley National Laboratory, whose fellow scientists Trent Northen, Ulas Karaoz, Hsiaon Chiem Lin, Ulisses Nunes da Rocha and Eoin Brodie, are co-authors of the paper.

"We have found that the presence of sunscreen-bearing crusts can actually raise local surface temperature by as much as 10 degrees C (18 degrees F). Because globally they cover some 20 percent of Earth's continents, biocrusts, their microbes and sunscreens must be important players in global heat budgets," said Couradeau.

"We estimate that there must be some 15 million metric tons of this one microbial sunscreen compound, called scytonemin, warming desert soils worldwide," added Couradeau, the lead author of the paper.

Couradeau spent the last three years studying biocrusts in the laboratory of Garcia-Pichel.

"An increase of 18 degrees F is not without consequence, and we can show that the darkening of the crust brings about important modifications in the soil microbiome, the community of microorganisms in the soil, allowing warm-loving types to do better," Garcia-Pichel added.

"This warming effect is likely to speed up soil chemical and biological reactions, and can make a big difference between being frozen or not when it gets cold," he explained. "On the other hand, it may put local organisms at increased risk when it is already quite hot."

Couradeau and Garcia-Pichel said that while biocrusts have been overlooked in the past they are now getting much closer scrutiny from scientists.

"Biocrusts, while cryptic, deserve more consideration from us," concluded Couradeau. "We need to include them in our climate models and speak about them in the classroom."

Media Contact

Skip Derra
skip.derra@asu.edu
480-965-4823

 @ASU

http://asunews.asu.edu/ 

Skip Derra | EurekAlert!

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>