Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers on Chikyu Report Successful Riser-Drilling

For the first time in the history of scientific ocean drilling, researchers aboard the riser-equipped drilling vessel CHIKYU successfully drilled down to a depth of 1,603.7 meters beneath the sea floor into an earthquake-generating zone off the coast of Japan.

Kumano Basin off Kii Peninsula, approximately 58 km southeast of Japan— Despite harsh atmospheric and ocean conditions, and complex geological characteristics of its drill site, the deep-sea drilling vessel CHIKYU, for the first time in the history of scientific ocean drilling, conducted riser-drilling operations to successfully drill down to a depth of 1,603.7 meters beneath the sea floor (at water depth of 2,054 meters).

Engaged in IODP Expedition 319, the CHIKYU is drilling deep into the upper portion of the great Nankai Trough earthquake zone to gain insights into geological formations and stress-strain characteristics. The CHIKYU is operated by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) a partner in the Integrated Ocean Drilling Program (IODP). The Kumano Basin drilling and sampling operations began on May 12; the science party is expected to complete the first drill site on or about August 1.

Riser-drilling technology was employed from about 700 meters below the sea floor to the bottom of the hole. Riser-drilling involves the circulation of drilling fluid that helps maintain pressure balance within the borehole. Cuttings were recovered from the circulated drilling fluid and analyzed to gain a better overall picture of downhole changes in lithology and age. Core samples also were collected between depths of 1,510 and 1,593.3 meters below the seafloor.

Co-Chief Scientist Lisa McNeill of University of Southampton, UK, states, “This state-of-the-art technology enables scientists to access an unknown area. It will provide a lot of important information about what has happened in the seismogenic zone in the past and its present condition.” She adds, “I’m very pleased to be a member of the science party conducting the first riser-drilling operation in the Nankai Trough.”

Following drilling operations that included “measurement -while-drilling” to obtain real-time geophysical characteristics, wireline logging instruments were lowered into the borehole to measure formation temperature, resistivity, porosity, density, gamma ray, and borehole diameter. The riser-drilling technology enabled dynamic formation testing using the logging instrumentation for the first time during IODP scientific ocean drilling operations; this instrumentation is designed to measure stress, water pressure, and rock permeability.

Co-Chief Scientist Timothy Byrne of University of Connecticut emphasizes the importance of the Nankai Trough experiment results. "These two parameters, stress magnitude and pore pressure,” he says, “are both important to understanding earthquake processes.”

In addition, vertical seismic profiling was conducted from July 24–25 to obtain accurate details of the geological structure of the plate boundary system. The activity involved an array of 16 seismographs vertically lowered into the borehole and eight ocean-bottom seismographs placed on the sea floor. An air-gun array on the JAMSTEC research vessel KAIREI generated elastic waves, which traveled through the formation to be recorded on the borehole and sea floor instruments.

“The seismic sensor array was installed in this hole below the thick sediment layer,” says Co-Chief Scientist Eiichiro Araki of JAMSTEC. “It acts like a telescope exploring the structure of faults in detail, which are responsible for causing large earthquakes such as the one that occurred here in 1944."

Operations at this drill site are expected to conclude after casing the borehole to the bottom of the hole and capping it with a corrosion cap for future installation of a long-term borehole monitoring system (LTBMS). After completion of this task, the CHIKYU will move to its next drill site, where riserless drilling will be employed to penetrate the shallow portion of the megasplay fault branching from the seismogenic zone. Logging-while-drilling (LWD) will be conducted to measure rock properties, geological formation, and geophysical characteristics of the area. As a preliminary operation for LTBMS scheduled in the future, observatory instruments will be installed inside the hole to measure borehole temperature and pressure over the next few years.

Further analyses by scientists are expected to generate significant scientific knowledge of past earthquake activities and development processes of the Nankai Trough accretionary prism, as well as the mechanism of occurrence of large earthquakes and tsunamis.

Co-Chief Scientist Demian Saffer of The Pennsylvania State University notes, “With the efforts of the drillers and operations groups, we succeeded in conducting several very challenging experiments, many of which can only be achieved by riser drilling. The results provide important information about conditions within the rocks above zones where earthquakes occur. Ultimately, we plan to install long-term observatory systems in these boreholes that will allow us to continuously monitor the geologic formation during the earthquake cycle.”

Daily reports, photos and video from the CHIKYU are available online at:
The above schedule is subject to change depending on the progress of drilling operation and weather

Wataru Nakamura | Newswise Science News
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>