Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers on Chikyu Report Successful Riser-Drilling

03.08.2009
For the first time in the history of scientific ocean drilling, researchers aboard the riser-equipped drilling vessel CHIKYU successfully drilled down to a depth of 1,603.7 meters beneath the sea floor into an earthquake-generating zone off the coast of Japan.

Kumano Basin off Kii Peninsula, approximately 58 km southeast of Japan— Despite harsh atmospheric and ocean conditions, and complex geological characteristics of its drill site, the deep-sea drilling vessel CHIKYU, for the first time in the history of scientific ocean drilling, conducted riser-drilling operations to successfully drill down to a depth of 1,603.7 meters beneath the sea floor (at water depth of 2,054 meters).

Engaged in IODP Expedition 319, the CHIKYU is drilling deep into the upper portion of the great Nankai Trough earthquake zone to gain insights into geological formations and stress-strain characteristics. The CHIKYU is operated by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) a partner in the Integrated Ocean Drilling Program (IODP). The Kumano Basin drilling and sampling operations began on May 12; the science party is expected to complete the first drill site on or about August 1.

Riser-drilling technology was employed from about 700 meters below the sea floor to the bottom of the hole. Riser-drilling involves the circulation of drilling fluid that helps maintain pressure balance within the borehole. Cuttings were recovered from the circulated drilling fluid and analyzed to gain a better overall picture of downhole changes in lithology and age. Core samples also were collected between depths of 1,510 and 1,593.3 meters below the seafloor.

Co-Chief Scientist Lisa McNeill of University of Southampton, UK, states, “This state-of-the-art technology enables scientists to access an unknown area. It will provide a lot of important information about what has happened in the seismogenic zone in the past and its present condition.” She adds, “I’m very pleased to be a member of the science party conducting the first riser-drilling operation in the Nankai Trough.”

Following drilling operations that included “measurement -while-drilling” to obtain real-time geophysical characteristics, wireline logging instruments were lowered into the borehole to measure formation temperature, resistivity, porosity, density, gamma ray, and borehole diameter. The riser-drilling technology enabled dynamic formation testing using the logging instrumentation for the first time during IODP scientific ocean drilling operations; this instrumentation is designed to measure stress, water pressure, and rock permeability.

Co-Chief Scientist Timothy Byrne of University of Connecticut emphasizes the importance of the Nankai Trough experiment results. "These two parameters, stress magnitude and pore pressure,” he says, “are both important to understanding earthquake processes.”

In addition, vertical seismic profiling was conducted from July 24–25 to obtain accurate details of the geological structure of the plate boundary system. The activity involved an array of 16 seismographs vertically lowered into the borehole and eight ocean-bottom seismographs placed on the sea floor. An air-gun array on the JAMSTEC research vessel KAIREI generated elastic waves, which traveled through the formation to be recorded on the borehole and sea floor instruments.

“The seismic sensor array was installed in this hole below the thick sediment layer,” says Co-Chief Scientist Eiichiro Araki of JAMSTEC. “It acts like a telescope exploring the structure of faults in detail, which are responsible for causing large earthquakes such as the one that occurred here in 1944."

Operations at this drill site are expected to conclude after casing the borehole to the bottom of the hole and capping it with a corrosion cap for future installation of a long-term borehole monitoring system (LTBMS). After completion of this task, the CHIKYU will move to its next drill site, where riserless drilling will be employed to penetrate the shallow portion of the megasplay fault branching from the seismogenic zone. Logging-while-drilling (LWD) will be conducted to measure rock properties, geological formation, and geophysical characteristics of the area. As a preliminary operation for LTBMS scheduled in the future, observatory instruments will be installed inside the hole to measure borehole temperature and pressure over the next few years.

Further analyses by scientists are expected to generate significant scientific knowledge of past earthquake activities and development processes of the Nankai Trough accretionary prism, as well as the mechanism of occurrence of large earthquakes and tsunamis.

Co-Chief Scientist Demian Saffer of The Pennsylvania State University notes, “With the efforts of the drillers and operations groups, we succeeded in conducting several very challenging experiments, many of which can only be achieved by riser drilling. The results provide important information about conditions within the rocks above zones where earthquakes occur. Ultimately, we plan to install long-term observatory systems in these boreholes that will allow us to continuously monitor the geologic formation during the earthquake cycle.”

Daily reports, photos and video from the CHIKYU are available online at:
http://www.jamstec.go.jp/chikyu/eng/Expedition/NantroSEIZE/special.html.
The above schedule is subject to change depending on the progress of drilling operation and weather

Wataru Nakamura | Newswise Science News
Further information:
http://www.jamstec.go.jp
http://www.iodp.org

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>