Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research links seismic slip and tremor, with implications for subduction zone

30.01.2009
In the last decade, scientists have recorded regular episodes of tectonic plates slowly, quietly slipping past each other in western Washington and British Columbia over periods of two weeks or more, releasing as much energy as a magnitude 6 earthquake.

The slip events coincide with regular occurrences of what scientists call nonvolcanic tremor, which showed up clearly on seismometers but for which the origins were uncertain.

Now researchers from Italy and the University of Washington have concluded that both phenomena are signs of the same processes taking place about 25 miles deep at what is believed to be the interface between the Juan de Fuca and North American tectonic plates.

"We are now more confident that the tremor and the slip are both products of the same slip process," said Kenneth Creager, a UW professor of Earth and space sciences and a co-author of a paper describing the research being published Jan. 30 in Science.

The findings could have major implications for megathrust earthquakes in the Cascadia subduction zone, an area along the West Coast from northern California to southern British Columbia. Megathrust events are huge earthquakes, often in the range of magnitude 9, that occur in areas where one tectonic plate is forced beneath another.

The slow slip events appear to be building stress on the megathrust fault, where the Juan de Fuca plate is sliding beneath the North American plate, with the two locked together most of the time. That pressure is relieved when the plates slip during megathrust earthquakes such as one determined to have occurred off the coast of Washington on Jan. 26, 1700, estimated at magnitude 9.2. That quake was similar to the great Sumatra-Andaman Islands earthquake the day after Christmas in 2004, which also measured 9.2 and triggered a devastating Indian Ocean tsunami.

In such events, the plates are locked together for hundreds of years and then slip past each other by sliding 50 feet or more during a megathrust earthquake.

"The same amount of slip must also occur onshore along the Washington coast," Creager said. "While megathrust earthquakes account for most of the plate motion offshore, and perhaps slightly onshore, episodic tremor and slip harmlessly accommodates much of the plate motion that is taking place on plate interface just west of the Puget Sound region's major population centers."

The paper's lead author is Mario La Rocca of Italy's National Institute of Geophysics and Volcanology Vesuvius Observatory. Other authors are Danilo Galluzzo, also of Italy's geophysics and volcanology institute, and Steve Malone, John Vidale, Justin Sweet and Aaron Wech of the UW.

Slip events occur on the interface between tectonic plates, but previous research has suggested that nonvolcanic tremor occurs in a broad range of depths from the plate boundary to 15 miles above it. The new research indicates the tremor is at the plate boundary, in essentially the same place as the slip.

The researchers used seismometer arrays at Sequim and Lopez Island in Washington state and at Sooke on the southern edge of Canada's Vancouver Island to record an episodic tremor and slip event in 2004. La Rocca devised a novel method using the different times that specific waves generated by the tremor were detected by seismometers, and the data helped the scientists pinpoint the depth of the tremor. At the same time, GPS measurements recorded the slow plate slippage.

Since they were discovered in the last decade, slow slip and tremor events in western Washington and British Columbia have been recorded on a regular basis about every 15 months. GPS signals indicate slip of about 1 inch during an average episode.

"We are quite confident that each episodic tremor and slip event will increase the stress on the megathrust fault," Creager said. "If a megathrust earthquake were to begin off the Washington coast, one might expect it to occur during one of these slow slip events."

But he said the findings demonstrate that much research remains to be done.
"We're just scratching the surface in understanding how all of this works."

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>