Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Energy From Hot Rocks

Two UC Davis geologists are taking part in the Iceland Deep Drilling Project, an international effort to learn more about the potential of geothermal energy, or extracting heat from rocks.

Professors Peter Schiffman and Robert Zierenberg are working with Wilfred Elders, professor emeritus at UC Riverside, Dennis Bird at Stanford University and Mark Reed at the University of Oregon to study the chemistry that occurs at high pressures and temperatures two miles below Iceland.

"We hope to understand the process of heat transfer when water reacts with hot volcanic rocks and how that changes the chemistry of fluids circulating at depth," Zierenberg said. "We know very little about materials under these conditions."

The university team, funded by the National Science Foundation, will drill up to 4 kilometers, or 2.5 miles, into the rock. It will be one of three boreholes sunk as part of the Iceland Deep Drilling Project, which is supported largely by Icelandic power companies.

The island nation generates more than half of its electrical power from geothermal energy. Hot water and steam from boreholes can be used to run turbines for electricity or directly to heat homes and businesses. Iceland meets the rest of its electricity needs from hydroelectric power, and imports fossil fuels only for transportation.

The U.S. has lots of potential for geothermal energy generation, Zierenberg said. There are several plants in California, including the Geysers region in the north and at Mammoth Lakes. Although its share of energy generation in the state is small, the Geysers is the largest geothermal field in the world, Zierenberg said. There are also numerous abandoned oil and gas boreholes around the country -- including in the Central Valley -- that could potentially access hot water that could be used for space heating.

That would, however, require something of a cultural change. In Iceland, geothermal heating is used at a community level: hot water is pumped up and circulated around a town or neighborhood. Americans are more accustomed to individual power delivery, Zierenberg said.

The team expects to begin drilling in the summer of 2008.

Andy Fell | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>