Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers detect hint of oxygen 50 to 100 million years earlier than first believed

01.10.2007
UCR part of teams from 5 research universities that analyzed Australian drill core for evidence of oxygen in Earth's early atmosphere

Two teams of scientists, including three researchers from UC Riverside, report that traces of oxygen appeared in Earth’s atmosphere roughly 100 million years before the “Great Oxidation Event” 2.4 billion years ago. The Great Oxidation Event is when most geoscientists think atmospheric oxygen rose sharply from very low levels and set the stage for animal life that followed almost two billion years later.

Analyzing layers of sedimentary rock in a kilometer-long core sample they retrieved in 2004 from the Hamersley Basin in Western Australia, the researchers found evidence for the presence of a small but significant amount of oxygen 2.5 billion years ago in the oceans and likely also in Earth’s atmosphere.

Because the core was recovered from deep underground, it contains materials untouched by the atmosphere for billions of years. After retrieval, the scientists sliced the core longitudinally for analysis.

Study results appear in a pair of papers in tomorrow’s issue of Science.

The UCR contribution:

Geochemists Timothy Lyons, Steven Bates, and Clinton Scott of the UCR Department of Earth Sciences — working with teams from Arizona State University and the universities of Maryland, Washington, and Alberta — generated elemental and isotopic data that provide indirect, or proxy, evidence for the evolving atmosphere and its relationship to the early evolution of life.

“This is the earliest convincing record for an ephemeral accumulation of oxygen in the biosphere before its irreversible rise beginning 2.4 billion years ago,” said Lyons, a professor of biogeochemistry.

Scott, a graduate student working with Lyons, used metals in the ancient ocean—now trapped in sedimentary rocks—as proxies for the amount of oxygen in the early ocean and atmosphere. His doctoral research provided a baseline for the Australian samples, showing that the 2.5 billion-year old rocks look more like those from younger times when oxygen was higher in the atmosphere.

These results revealed to the UCR geochemists and their colleagues at Arizona State University that oxygen increased significantly but briefly 100 million years before its permanent place in Earth’s atmosphere.

Working principally with colleagues at the University of Maryland, Bates, a research associate, and Lyons analyzed sulfur present in the Australian rocks as another fingerprint of oxygen concentrations at Earth’s surface. Their analysis of the sulfur also confirmed that the world changed briefly but importantly 2.5 billion years ago, presaging the life-affirming oxygenation of the atmosphere 100 million years later.

“We were surprised to see evidence of increasing oxygen in rocks so old,” Lyons said. “And the fact that two independent lines of evidence point in the same direction suggests that Earth’s most dramatic shift in atmospheric composition and its relationship to the evolution of life began earlier and was more complex than most imagined.”

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>