Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists launch deep-sea scientific drilling program to study volatile earthquake zone

25.09.2007
Drilling vessel Chikyu to embark on its inaugural scientific research expedition

Today, the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) gets underway, with the Japanese drilling vessel Chikyu departing from Shingu Port with scientists aboard, all ready to log, drill, sample, and install monitoring instrumentation in one of the most active earthquake zones on Earth. The vessel's launch starts the first of a series of scientific drilling expeditions that will retrieve geological samples and provide scientific data from the Nankai Trough fault zone for the first time. Situated off Japan's southwest coast, the Nankai Trough has reliably generated large-scale earthquakes and tsunamis for millions of years, including historic earthquakes in 1944 and 1946, which measured 8.1 and 8.3, respectively, on the Richter scale. The NanTroSEIZE expeditions are supported by the Integrated Ocean Drilling Program, a marine research initiative jointly funded by Japan, the United States, a consortium of European countries, the People's Republic of China, and South Korea.

NanTroSEIZE scientists are prepared to drill deeply into the Earth to observe earthquake mechanisms in a well-known subduction zone. The process of subduction occurs when tectonic plates collide and one plate slides beneath another. Geological samples will be collected from the subduction zone, so that IODP scientists can analyze them and study the frictional properties of the rock. Later, sensors are to be installed deep beneath the sea floor- in the seismogenic fault zone-to monitor development of earthquakes at close range. These sensors and data collected from cored samples are expected to yield new insights into naturally occurring processes responsible for earthquakes. IODP scientists anticipate that the new data also will help them understand water motion and how water affects subduction zones.

Ocean Drilling Program Director James F. Allan of the U.S. National Science Foundation (NSF) characterized the first NanTroSEIZE expedition as an important milestone. "NSF welcomes the beginning of a new tomorrow, where the Chikyu enables us to explore the origins of devastating earthquakes at their source, study Earth history through coring of unstable, thick sediment sections, and investigate the fundamentals of ocean crust formation. These new capabilities," Allan notes, "complement those provided by the U.S. scientific ocean drilling vessel and European mission-specific platforms, which also support IODP scientific investigations, and that have investigated the subseafloor biosphere and Earth's dynamic climate with great success."

The full range of NanTroSEIZE investigations will occur in four stages:

Stage 1, now underway, calls for drilling and sampling at six drill sites to characterize the region's geology and provide geotechnical information for subsequent deep riser drilling.

Stage 2 involves drilling the first of two deep holes, using Chikyu's unique riser drilling technology to target the mega-splay fault zone (where an array of faults occur) at ~3,500 meters below the seafloor.

Stage 3 focuses on 6,000-meter deep drilling into the seismogenic zone and across the plate interface into subducting crust.

Stage 4 includes installing long-term observatory systems in two ultra-deep boreholes.

During Stage 1, drill targets are 1) the incoming sediment of Shikoku Basin and the underlying oceanic crust, 2) the frontal thrust system at the toe of the accretionary wedge (where sediment is added to tectonic plates through frictional contact), 3) the mid-wedge multiple-fault system (mega-splays), and 4) two, approximately 1,000-meter deep holes at sites identified for later deep penetration into seismogenic zone faults. The current Stage 1 expedition will continue until November 16. The following Stage 1 expedition will sail from Nov. 17-Dec. 19, 2007, with new scientist participation.

Logging While Drilling (LWD) investigations will occur at all Stage 1 drill sites. LWD operations consist of continuously drilling one or more holes at each site by drilling down at a controlled rate, with logging tools incorporated into the bottom-hole assembly, a relatively short distance (tens of meters) behind the drill bit. Log data are acquired very soon after the hole is cut, providing the best possible data quality. LWD operational and science data are crucial for optimizing subsequent Stage 1 expeditions and future drilling stages.

The current NanTroSEIZE expedition is led by Co-Chief Scientist Harold Tobin, a marine geologist on the faculty of University of Wisconsin-Madison, and Co-Chief Scientist Masa Kinoshita, a marine geophysicist at the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), a leading research institution in Japan.

"A fundamental goal of the NanTroSEIZE expedition," says Dr. Tobin, "is to put long-term monitoring instruments down inside the earthquake fault, so we can look at the physics of the fault process. We will be able to determine whether earthquakes actually have precursory signalsþuthings that happen before the earthquakesþuwe can measure that will provide early warning systems for people on land."

Co-chief scientist Dr. Kinoshita explains that to people in Japan, earthquakes and tsunamis are serious matters. "Consequently, it is logical and relatively easy to excavate into the earthquake source to learn about its mechanism," he says. The NanTroSEIZE science party will excavate 6,000 meters below the 2,000-meter deep oceanic bottom to meet the expedition's scientific objectives.

Prior to its role in NanTroSEIZE, the Chikyu underwent a full schedule of systems integration testing near Shimokita Peninsula and in-situ testing of its drilling, coring, and navigation systems. Sea trials for the custom-built drilling vessel began in 2005 and concluded more than two years later. The Chikyu is the first riser-equipped scientific research vessel in the world. Its high-tech laboratories are specifically designed for core retrieval, description, and analysis. Complex data sets are assembled onboard and entered into a vast IODP database. Daily and weekly logs are posted online from the ship for access by a global community of research scientists eager to glean news of these ground-breaking investigations. (Find logs at www.jamstec.go.jp/chikyu/eng/CHIKYU/status.html)

Nancy Light | EurekAlert!
Further information:
http://www.iodp.org
http://www.jamstec.go.jp/chikyu/eng/CHIKYU/status.html

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>