Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising Surface Temperatures Drive Back Winter Ice in Barents Sea

19.09.2007
Not so between Siberia and Alaska, where winter sea ice holds its own

Rising sea-surface temperatures in the Barents Sea, northeast of Scandinavia, are the prime cause of the retreating winter ice edge over the past 26 years, according to research by Jennifer Francis, associate research professor at Rutgers’ Institute of Marine and Coastal Sciences (IMCS). The recent decreases in winter ice cover is clear evidence that Arctic pack ice will continue on its trajectory of rapid decline, Francis said.

In a paper published in Geophysical Review Letters, Francis and Elias Hunter, a research specialist in Francis’ laboratory, found that the rising average winter-time sea-surface temperature of the Barents Sea – up 3 degrees Celsius since 1980 – is likely driven by increasing greenhouse gases, which in turn are melting more ice. Francis and Hunter used satellite information dating back 26 years to perform their study.

Scientists have known for some time that the extent of perpetual, summer ice cover in the Arctic has been shrinking, but until the past few years, the average amount of winter ice has been relatively steady. The winter ice amount is important because if it begins to decrease, scientists believe it is an indicator that enough extra heat from the sun is being absorbed in summer in new open water areas so that the ice grows less in winter and is more easily melted the following summer, leading to even less summer ice. The record-breaking ice loss this year is further, dramatic evidence that this process is underway. While satellites can see the recent winter ice retreat, no one knew until now what was driving the ice back. Francis said she and Hunter were surprised when they discovered that warming ocean temperatures – and not atmospheric effects – were the main source of winter ice retreat, and that the warming is linked to general rising temperatures of the Atlantic Ocean via the Gulf Stream, which brings Atlantic water into the Barents Sea. “In the Barents Sea, I expected more influence from atmospheric heating; but it [the retreat of the ice edge] seems to be governed almost entirely by warming from the ocean,” Francis said.

Should the warming trend continue -- and all indications are that it will -- there would be considerable economic and political implications. “Fishing, shipping, oil exploration will all be easier to do in the Arctic if there is less ice around for a shorter time,” Francis said.

Francis and Hunter were in for another surprise in the Bering Sea, between Alaska and Siberia. That sea is virtually cut off from the Pacific Ocean by the Aleutian Islands. The researchers expected the ice edge there to be pushed around by northerly and southerly winds, but that wasn’t the case. Instead, it was the strength or weakness of the Aleutian Low – a semi-permanent storm with predominantly easterly winds in much of the Bering Sea – that determined the ice edge. In years when the low was weak – when the east wind didn’t blow as hard – the ice edge crept farther south. In years when the east winds blew hard, the ice edge retreated northward. The strength of the Aleutian Low oscillates in cycles lasting 10 to 20 years, Francis said, and right now, appears to be in a weak cycle. That means that the ice edge in the Bering Sea, not exposed to the world’s ocean system like its Barents Sea counterpart, has not retreated as much. Computer models predict, however, that the Aleutian Low will strengthen as the global climate system adapts to increasing greenhouse gases.

Contact: Ken Branson
732-932-7084, Ext. 633
E-mail: kbranson@ur.rutgers.edu

Ken Branson | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>