Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising Surface Temperatures Drive Back Winter Ice in Barents Sea

19.09.2007
Not so between Siberia and Alaska, where winter sea ice holds its own

Rising sea-surface temperatures in the Barents Sea, northeast of Scandinavia, are the prime cause of the retreating winter ice edge over the past 26 years, according to research by Jennifer Francis, associate research professor at Rutgers’ Institute of Marine and Coastal Sciences (IMCS). The recent decreases in winter ice cover is clear evidence that Arctic pack ice will continue on its trajectory of rapid decline, Francis said.

In a paper published in Geophysical Review Letters, Francis and Elias Hunter, a research specialist in Francis’ laboratory, found that the rising average winter-time sea-surface temperature of the Barents Sea – up 3 degrees Celsius since 1980 – is likely driven by increasing greenhouse gases, which in turn are melting more ice. Francis and Hunter used satellite information dating back 26 years to perform their study.

Scientists have known for some time that the extent of perpetual, summer ice cover in the Arctic has been shrinking, but until the past few years, the average amount of winter ice has been relatively steady. The winter ice amount is important because if it begins to decrease, scientists believe it is an indicator that enough extra heat from the sun is being absorbed in summer in new open water areas so that the ice grows less in winter and is more easily melted the following summer, leading to even less summer ice. The record-breaking ice loss this year is further, dramatic evidence that this process is underway. While satellites can see the recent winter ice retreat, no one knew until now what was driving the ice back. Francis said she and Hunter were surprised when they discovered that warming ocean temperatures – and not atmospheric effects – were the main source of winter ice retreat, and that the warming is linked to general rising temperatures of the Atlantic Ocean via the Gulf Stream, which brings Atlantic water into the Barents Sea. “In the Barents Sea, I expected more influence from atmospheric heating; but it [the retreat of the ice edge] seems to be governed almost entirely by warming from the ocean,” Francis said.

Should the warming trend continue -- and all indications are that it will -- there would be considerable economic and political implications. “Fishing, shipping, oil exploration will all be easier to do in the Arctic if there is less ice around for a shorter time,” Francis said.

Francis and Hunter were in for another surprise in the Bering Sea, between Alaska and Siberia. That sea is virtually cut off from the Pacific Ocean by the Aleutian Islands. The researchers expected the ice edge there to be pushed around by northerly and southerly winds, but that wasn’t the case. Instead, it was the strength or weakness of the Aleutian Low – a semi-permanent storm with predominantly easterly winds in much of the Bering Sea – that determined the ice edge. In years when the low was weak – when the east wind didn’t blow as hard – the ice edge crept farther south. In years when the east winds blew hard, the ice edge retreated northward. The strength of the Aleutian Low oscillates in cycles lasting 10 to 20 years, Francis said, and right now, appears to be in a weak cycle. That means that the ice edge in the Bering Sea, not exposed to the world’s ocean system like its Barents Sea counterpart, has not retreated as much. Computer models predict, however, that the Aleutian Low will strengthen as the global climate system adapts to increasing greenhouse gases.

Contact: Ken Branson
732-932-7084, Ext. 633
E-mail: kbranson@ur.rutgers.edu

Ken Branson | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>