Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rising Surface Temperatures Drive Back Winter Ice in Barents Sea

Not so between Siberia and Alaska, where winter sea ice holds its own

Rising sea-surface temperatures in the Barents Sea, northeast of Scandinavia, are the prime cause of the retreating winter ice edge over the past 26 years, according to research by Jennifer Francis, associate research professor at Rutgers’ Institute of Marine and Coastal Sciences (IMCS). The recent decreases in winter ice cover is clear evidence that Arctic pack ice will continue on its trajectory of rapid decline, Francis said.

In a paper published in Geophysical Review Letters, Francis and Elias Hunter, a research specialist in Francis’ laboratory, found that the rising average winter-time sea-surface temperature of the Barents Sea – up 3 degrees Celsius since 1980 – is likely driven by increasing greenhouse gases, which in turn are melting more ice. Francis and Hunter used satellite information dating back 26 years to perform their study.

Scientists have known for some time that the extent of perpetual, summer ice cover in the Arctic has been shrinking, but until the past few years, the average amount of winter ice has been relatively steady. The winter ice amount is important because if it begins to decrease, scientists believe it is an indicator that enough extra heat from the sun is being absorbed in summer in new open water areas so that the ice grows less in winter and is more easily melted the following summer, leading to even less summer ice. The record-breaking ice loss this year is further, dramatic evidence that this process is underway. While satellites can see the recent winter ice retreat, no one knew until now what was driving the ice back. Francis said she and Hunter were surprised when they discovered that warming ocean temperatures – and not atmospheric effects – were the main source of winter ice retreat, and that the warming is linked to general rising temperatures of the Atlantic Ocean via the Gulf Stream, which brings Atlantic water into the Barents Sea. “In the Barents Sea, I expected more influence from atmospheric heating; but it [the retreat of the ice edge] seems to be governed almost entirely by warming from the ocean,” Francis said.

Should the warming trend continue -- and all indications are that it will -- there would be considerable economic and political implications. “Fishing, shipping, oil exploration will all be easier to do in the Arctic if there is less ice around for a shorter time,” Francis said.

Francis and Hunter were in for another surprise in the Bering Sea, between Alaska and Siberia. That sea is virtually cut off from the Pacific Ocean by the Aleutian Islands. The researchers expected the ice edge there to be pushed around by northerly and southerly winds, but that wasn’t the case. Instead, it was the strength or weakness of the Aleutian Low – a semi-permanent storm with predominantly easterly winds in much of the Bering Sea – that determined the ice edge. In years when the low was weak – when the east wind didn’t blow as hard – the ice edge crept farther south. In years when the east winds blew hard, the ice edge retreated northward. The strength of the Aleutian Low oscillates in cycles lasting 10 to 20 years, Francis said, and right now, appears to be in a weak cycle. That means that the ice edge in the Bering Sea, not exposed to the world’s ocean system like its Barents Sea counterpart, has not retreated as much. Computer models predict, however, that the Aleutian Low will strengthen as the global climate system adapts to increasing greenhouse gases.

Contact: Ken Branson
732-932-7084, Ext. 633

Ken Branson | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>