Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Andalusian scientists create Spain's largest seismic and GPS station network

07.05.2007
Andalusian scientists take part in a research project called Geociencias en Iberia: Estudios integrados de topografía y evaluación 4D. Topo-Iberia (geosciences in Iberia- integrated studies on topography and 4D assessment.

Topo-Iberia), whose aim is to create Spain’s largest seismic and GPS station network. This initiative, which will involve over 103 research doctors from ten different Spanish teams, will allow to get better models of the lithosphere structure from natural seismicity, by creating an unprecedented large reliable database and quantifying the current seismic movements in the Iberian Peninsula.

In order to carry out this research project, the Spanish Ministry of Education and Science subsidized it with a 4.5 million euros-grant last autumn. The Andalusian groups involved in the project belong to the universities of Jaén, Cádiz and Pablo Olavide, and will be coordinated by the head of the Geodynamics Department of the University of Granada, Dr. Francisco González Lodeiro.

This project implies the display of a temporary broad band seismic network without precedent in Spain; it will consist of a minimum of 80 seismic stations about 50-60 km away from each other, which will give simultaneous homogeneous coverage to different regions. In addition to this, Topo-Iberia will create Spain’s largest GPS network ever.

The real novelty of this project is that it provides an integrated analysis of the influence of superficial and deep processes, like other international top projects as TopoEurope/EuroArray in Europe and the Earthscope program in the USA.

Thanks to this initiative, researchers will be able to know the processes and mechanisms that cause seismic movements (both superficial and deep ones) which currently occur in the Iberian Peninsula and their relationship with the rest of Spain and Africa. In addition to this, Topo-Iberia tackles the structure and dynamics of the lithosphere in Spain.

Seismic hazard map

In addition to this, a team of researchers of the University of Granada, in collaboration with Italian scientists, are analysing the epicentres of earthquakes that occurred in the past in order to make seismic hazard maps to avoid future damage. The exact point where disasters were caused, such as the earthquakes of Alhama in 1884 and Malaga in 1680, were not known until now because the seismic stations that registered the earthquakes and send a signal to the observatories to establish the location did not start to fully work until the beginning of the 20th century.

This new aspect will not only be useful to get to learn about the seismic past of southern Spain, but also to take prevention measures so as to make viable construction formulas, buildings in compacted land and the exact location of the areas that run a high hazard in the future so that great damage can be avoided.

The method used by these Granada-based geo-physicians to find the epicentre of the seismic movements that occurred some centuries ago consisted of distributing per zones –thanks to a mathematical technique designed by themselves- the areas where the damage occurred so as to find the epicentre from there.

The data taken from this work are very useful indeed to make seismic hazard maps, as not only the areas affected by the earthquake will be considered now but also the actual point where the earthquake started, and therefore, the most likely to be damaged in the future.

Research abroad

Finally, the University of Jaén is leading a project awarded by the Spanish International Cooperation Agency (AECI), which belongs to the Spanish Foreign Affairs Ministry. Its aim is to assess the seismic hazards in northern Morocco. The universities of Granada and Mohamed V of Morocco will also take part in this research work, which is a first phase of the calculation of seismic hazards in northern Morocco. In this phase, all the necessary information to assess the probability of earthquakes to happen will be gathered and analysed, as well as the possible effects in the region.

In the last few years, northern Morocco, the country’s most seismic dangerous area, has become the object of studies due to the many high-intensity earthquakes that have taken place there which caused important material and human losses, the last one being in Alhucemas in February 2004.

Dr. José Antonio Peláez, of the University of Jaen, the project leader, said- ‘When you assess the seismic danger of an area, you try to find out how relevant seismic activity is in that area so that you know what to expect; this way you can try to improve the construction rules in areas that are more likely to suffer an earthquake’. Peláez underlined that this is the first study of these characteristics carried out in Morocco.

Previous studies were less ambitious and thorough, were made by local researchers and did not offer a wide panorama of what seismic activity in Morocco is like. The team work has already carried out similar assessments in Spain, Portugal and Algeria, the results being published in international scientific journals.

In this first phase of the AECI project, a Spanish politics international cooperation management body for development, there are two stages- obtaining a thorough reliable seismic catalogue, and the second one, a seism tectonic information gathering stage. During the first one, any information that Moroccan and other international researchers have on Moroccan earthquakes will be compiled, and then it will be filtered and validated later on.

The second stage will consists of gathering and analysing geo tectonic studies carried out so far, in northern Morocco, so see to what extent they show some light on the seismic danger in that area. All this processed information will allow the group of scientists, during a second stage, to determine what is the probability for an earthquake of certain characteristics to occur and its effects in this area.

The leader of the project stressed the importance of reviewing, in this first phase, the information available on this earthquakes, as there are some that have been classified with a certain intensity and with the pass of time their effects can be analysed better with more documental information. José Antonio Peláez added: ‘This is the information we have to review and validate’.

Ismael Gaona | alfa
Further information:
http://www.andaluciainvestiga.com

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>