Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Andalusian scientists create Spain's largest seismic and GPS station network

07.05.2007
Andalusian scientists take part in a research project called Geociencias en Iberia: Estudios integrados de topografía y evaluación 4D. Topo-Iberia (geosciences in Iberia- integrated studies on topography and 4D assessment.

Topo-Iberia), whose aim is to create Spain’s largest seismic and GPS station network. This initiative, which will involve over 103 research doctors from ten different Spanish teams, will allow to get better models of the lithosphere structure from natural seismicity, by creating an unprecedented large reliable database and quantifying the current seismic movements in the Iberian Peninsula.

In order to carry out this research project, the Spanish Ministry of Education and Science subsidized it with a 4.5 million euros-grant last autumn. The Andalusian groups involved in the project belong to the universities of Jaén, Cádiz and Pablo Olavide, and will be coordinated by the head of the Geodynamics Department of the University of Granada, Dr. Francisco González Lodeiro.

This project implies the display of a temporary broad band seismic network without precedent in Spain; it will consist of a minimum of 80 seismic stations about 50-60 km away from each other, which will give simultaneous homogeneous coverage to different regions. In addition to this, Topo-Iberia will create Spain’s largest GPS network ever.

The real novelty of this project is that it provides an integrated analysis of the influence of superficial and deep processes, like other international top projects as TopoEurope/EuroArray in Europe and the Earthscope program in the USA.

Thanks to this initiative, researchers will be able to know the processes and mechanisms that cause seismic movements (both superficial and deep ones) which currently occur in the Iberian Peninsula and their relationship with the rest of Spain and Africa. In addition to this, Topo-Iberia tackles the structure and dynamics of the lithosphere in Spain.

Seismic hazard map

In addition to this, a team of researchers of the University of Granada, in collaboration with Italian scientists, are analysing the epicentres of earthquakes that occurred in the past in order to make seismic hazard maps to avoid future damage. The exact point where disasters were caused, such as the earthquakes of Alhama in 1884 and Malaga in 1680, were not known until now because the seismic stations that registered the earthquakes and send a signal to the observatories to establish the location did not start to fully work until the beginning of the 20th century.

This new aspect will not only be useful to get to learn about the seismic past of southern Spain, but also to take prevention measures so as to make viable construction formulas, buildings in compacted land and the exact location of the areas that run a high hazard in the future so that great damage can be avoided.

The method used by these Granada-based geo-physicians to find the epicentre of the seismic movements that occurred some centuries ago consisted of distributing per zones –thanks to a mathematical technique designed by themselves- the areas where the damage occurred so as to find the epicentre from there.

The data taken from this work are very useful indeed to make seismic hazard maps, as not only the areas affected by the earthquake will be considered now but also the actual point where the earthquake started, and therefore, the most likely to be damaged in the future.

Research abroad

Finally, the University of Jaén is leading a project awarded by the Spanish International Cooperation Agency (AECI), which belongs to the Spanish Foreign Affairs Ministry. Its aim is to assess the seismic hazards in northern Morocco. The universities of Granada and Mohamed V of Morocco will also take part in this research work, which is a first phase of the calculation of seismic hazards in northern Morocco. In this phase, all the necessary information to assess the probability of earthquakes to happen will be gathered and analysed, as well as the possible effects in the region.

In the last few years, northern Morocco, the country’s most seismic dangerous area, has become the object of studies due to the many high-intensity earthquakes that have taken place there which caused important material and human losses, the last one being in Alhucemas in February 2004.

Dr. José Antonio Peláez, of the University of Jaen, the project leader, said- ‘When you assess the seismic danger of an area, you try to find out how relevant seismic activity is in that area so that you know what to expect; this way you can try to improve the construction rules in areas that are more likely to suffer an earthquake’. Peláez underlined that this is the first study of these characteristics carried out in Morocco.

Previous studies were less ambitious and thorough, were made by local researchers and did not offer a wide panorama of what seismic activity in Morocco is like. The team work has already carried out similar assessments in Spain, Portugal and Algeria, the results being published in international scientific journals.

In this first phase of the AECI project, a Spanish politics international cooperation management body for development, there are two stages- obtaining a thorough reliable seismic catalogue, and the second one, a seism tectonic information gathering stage. During the first one, any information that Moroccan and other international researchers have on Moroccan earthquakes will be compiled, and then it will be filtered and validated later on.

The second stage will consists of gathering and analysing geo tectonic studies carried out so far, in northern Morocco, so see to what extent they show some light on the seismic danger in that area. All this processed information will allow the group of scientists, during a second stage, to determine what is the probability for an earthquake of certain characteristics to occur and its effects in this area.

The leader of the project stressed the importance of reviewing, in this first phase, the information available on this earthquakes, as there are some that have been classified with a certain intensity and with the pass of time their effects can be analysed better with more documental information. José Antonio Peláez added: ‘This is the information we have to review and validate’.

Ismael Gaona | alfa
Further information:
http://www.andaluciainvestiga.com

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>