Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate catastrophes in the Solar System

27.04.2007
Earth sits between two worlds that have been devastated by climate catastrophes. In the effort to combat global warming, our neighbours can provide valuable insights into the way climate catastrophes affect planets.
Modelling Earth’s climate to predict its future has assumed tremendous importance in the light of mankind’s influence on the atmosphere. The climate of our two neighbours is in stark contrast to that of our home planet, making data from ESA’s Venus Express and Mars Express invaluable to climate scientists.

Venus is a cloudy inferno whilst Mars is a frigid desert. As current concerns about global warming have now achieved widespread acceptance, pressure has increased on scientists to propose solutions.

The key weapon in a climate scientist’s arsenal is the climate model, a computer programme that uses the equations of physics to investigate the way in which Earth’s atmosphere works. The programme helps predict how the atmosphere might change in the future.

“To members of the public it must seem like climate models are crystal balls, but they are actually just complex equations” says David Grinspoon, Denver Museum of Nature and Science, and one of Venus Express’s interdisciplinary scientists.

The more scientists look at those equations, the more they realise just how complicated Earth’s climate system is. Grinspoon puts the predicament like this: “In fifty or a hundred years, we will know whether today’s climate models were right but if they are wrong, by then it will be too late.”

To help increase confidence in the computer models, Grinspoon believes that scientists should look at our neighbouring planets. “It seems that both Mars and Venus started out much more like Earth and then changed. They both hold priceless climate information for Earth,” says Grinspoon.

The atmosphere of Venus is much thicker than Earth’s. Nevertheless, current climate models can reproduce its present temperature structure well. Now planetary scientists want to turn the clock back to understand why and how Venus changed from its former Earth-like conditions into the inferno of today.

They believe that the planet experienced a runaway greenhouse effect as the Sun gradually heated up. Astronomers believe that the young Sun was dimmer than the present-day Sun by 30 percent. Over the last 4 thousand million years, it has gradually brightened. During this increase, Venus’s surface water evaporated and entered the atmosphere.

“Water vapour is a powerful greenhouse gas and it caused the planet to heat-up even more. This is turn caused more water to evaporate and led to a powerful positive feedback response known as the runaway greenhouse effect,” says Grinspoon.

As Earth warms in response to manmade pollution, it risks the same fate. Reconstructing the climate of the past on Venus can give scientists a better understanding of how close our planet is to such a catastrophe. However, determining when Venus passed the point of no return is not easy. That’s where ESA’s Venus Express comes in.

The spacecraft is in orbit around Venus collecting data that will help unlock the planet’s past. Venus is losing gas from its atmosphere, so Venus Express is measuring the rate of this loss and the composition of the gas being lost. It also watches the movement of clouds in the planet’s atmosphere. This reveals the way Venus responds to the absorption of sunlight, because the energy from the Sun provides the power that allows the atmosphere to move.

In addition, Venus Express is charting the amount and location of sulphur dioxide in the planet’s atmosphere. Sulphur dioxide is a greenhouse gas and is released by volcanoes on Venus.

“Understanding all of this will help us pin down when Venus lost its water,” says Grinspoon. That knowledge can feed into the interpretation of climate models on the Earth because although both planets seem very different now, the same laws of physics govern both worlds.

Understanding Mars’ past is equally important. ESA’s Mars Express is currently investigating the fate of the Red Planet. Smaller than the Earth, Mars is thought to have lost its atmosphere to space. When Martian volcanoes became extinct, so did the planet’s means of replenishing its atmosphere turning it into an almost-airless desert.

“What happened on these two worlds is very different but either would be equally disastrous for Earth. We are banking on our ability to accurately predict Earth’s future climate,” says Grinspoon. Anything that can shed light on our own future is valuable. That is why the study of our neighbouring worlds is vital.

So, when planetary scientists talk of exploring other worlds, they are also increasing their ability to understand our own planet.

Håkan Svedhem | alfa
Further information:
http://www.esa.int/esaSC/SEM2EHMJC0F_index_0.html

More articles from Earth Sciences:

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

nachricht WSU researchers document one of planet's largest volcanic eruptions
12.10.2017 | Washington State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

‘Find the Lady’ in the quantum world

17.10.2017 | Physics and Astronomy

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>