Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

32-mile cable installed for first deep-sea observatory

10.04.2007
Step toward making Monterey Bay seafloor accessible to scientists 24 hours a day

Oceanographers have completed an important step in constructing the first deep-sea observatory off the continental United States.

Workers in the multi-institution effort laid 32 miles (52 kilometers) of cable along the Monterey Bay sea floor that will provide electrical power to scientific instruments, video cameras, and robots 3,000 feet (900 meters) below the ocean surface. The link will also carry data from the instruments back to shore, for use by scientists and engineers from around the world.

The Monterey Accelerated Research System (MARS) observatory, due to be completed later this year, will provide ocean scientists with 24-hour-a-day access to instruments and experiments in the deep sea. The project is managed by the Monterey Bay Aquarium Research Institute (MBARI) and funded by the National Science Foundation (NSF).

Currently, almost all oceanographic instruments in the deep sea rely on batteries for power and store their data on hard disks or memory chips until they are brought back to the surface. With a continuous and uninterrupted power supply, instruments attached to the MARS observatory could remain on the sea floor for months or years.

"MARS represents the first step in a long-planned process to transform the way the oceans are studied," said Julie Morris, director of NSF's Division of Ocean Sciences. "Marine scientists will no longer be required to go out to the ocean for their studies. The ocean is about to come into their offices."

If something goes wrong with the instruments, scientists will know immediately, and will be able to recover or reprogram them as necessary.

Slightly thicker than a garden hose, the MARS cable is buried about 3 feet below the sea floor along most of its route, so it will not be disturbed by boat anchors or fishing gear.

The cable itself contains a copper electrical conductor and strands of optical fiber. The copper conductor will transmit up to 10 kilowatts of power from a shore station at Moss Landing, Calif., to instruments on the sea floor. The optical fiber will carry up to 2 gigabits per second of data from these instruments back to researchers on shore, allowing scientists to monitor and control instruments 24 hours a day, and to have an unprecedented view of how environmental conditions in the deep sea change over time.

"After 5 years of hard work, we are thrilled to bring the age of the Internet to the deep ocean, so we can understand, appreciate and protect the two-thirds of our planet that lies under the sea," said MBARI director Marcia McNutt. "We are grateful for the help of our talented partners and visionary sponsors. MARS has truly been a team effort."

At the seaward end of the MARS cable is a large steel frame about 4 feet (1.2 meters) tall and 15 feet (4.6 meters) on each side. This "trawl-resistant frame" will protect the electronic "guts" of the MARS observatory, which will serve as a computer network hub and electrical substation in the deep sea. The researchers hope to install these electronic components into the trawl-resistant frame in the fall of 2007.

After the electronics package is installed and tested, scientists from around the world will be able to attach their instruments to the observatory using underwater extension cords. These instruments will be carried down from the surface and plugged into the science node using MBARI's remotely operated vehicles.

MARS also will serve as a testing ground for technology that will be used on more ambitious deep-sea observatories. As planned, such observatories will use thousands of kilometers of undersea cables to hook up dozens of seismographs and oceanographic monitoring stations. They will provide scientists with new views of sea floor life, and a new understanding of the global tectonic processes that spawn earthquakes and tsunamis.

"MARS is the harbinger of an international ocean observatory network that will enable scientists to study ocean features and changing conditions," said Morris. "New ocean observing capabilities will provide knowledge about the ocean, and information to better manage and preserve ocean resources."

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>