Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new network of GPS stations to measure movement of the earth’s crust

05.04.2007
This new cross-border network is the first of its kind and was devised to determine the changes in the earth’s crust that are the source of earthquakes and that form the Alpine region’s relief. This system is comprised of 40 fixed high-resolution, continual recording GPS (1) stations. With submillimetric precision (2), the network will also be highly useful for all professionals who work with GPS.

One aim of this project is to increase understanding of seismic risks throughout the Alpine chain and the surrounding regions. Urban zones in full development, as well as some major European centres (Grenoble, Geneva, Torino,…), are concentrated along the mountain chain. Thanks to this new network of GPS stations, it will be possible to continuously measure slow (3) and low amplitude movements in the earth’s crust with great precision. The information provided by the network, added to geologic data on of the fault zones, will contribute to a better localisation of potential seismic sites, their size and their consequences in terms of expected damages in the Alpine region.

The project, begun three years ago, was implemented by 12 partners, including 2 in France: the Laboratory of Internal Geophysics and Tectonophysics (4) at the University Joseph Fournier in Grenoble and the Strasbourg Institute of Earth Physics (5) (IPGS) at the University Louis Pasteur (ULP) in Strasbourg. The IPGS brought its expertise in characterising active faults for seismic risk and measuring deformations with high precision spatial geodetics (6) (GPS).

Of the 40 stations located in the Alpine region, 5 have been acquired by the IPGS thanks to co-funding from the Région Alsace, the CNRS and the European programme Interreg III B – Alpine region. These 5 stations are installed in Alsace on geological sites that meet the specific criteria necessary for such high precision. They complement the 2 existing stations, STJ9 and WELS (7) of ULP’s Earth science Engineering School and Observatory (EOST).

In Alsace, the new GPS network will also be very useful for all potential users of geodesic data on local communities. Cadastral services (property management), surveyors (urban planning, regional development), network managers (water, gas, and telecommunications), cartographers, civil security services, as well as agriculture (land plotting), navigation, transportation, and meteorological services will all find the information highly useful.

1) GPS (Global positioning system) : Geodesic spatial system, that allows three-dimensional positioning (latitude, longtitude, altitude) as well as measurement of time. It has been operational since 1994 ; with 24 satellites, it guarantees full coverage of the globe 24 hours a day.

2) Submillimetric precision: positioning under one millimetre.

3) Slow movements: “slow“ movement is more difficult to study than the “rapid“ movement typical of tectonic regions such as the San Andreas Fault (California) or the Anatolian Fault in Turkey.

4) Joint research unit CNRS/UJF, UMR 5559.

5) Joint research unit CNRS/ULP, UMR 7516.

6) Geodetics: the science that studies the form and dimensions of the earth.

7) STJ9 and WELS: These two stations are part of the observational network of the EOST. STJ9 benefits from support from the Région Alsace. These stations are part of France’s national GPS network (RENAG) of the National Institute for the Sciences of the Universe (CNRS) and the French GPS permanent network (RGP).

Research Contact:
Dr. Jerome van der Woerd
Tél. 03 90 24 03 49
jeromev@eost.u-strasbg.fr

Isabel Pellon Zarragoitia | alfa
Further information:
http://www.u-strasbg.fr

More articles from Earth Sciences:

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

nachricht NASA spies Tropical Cyclone 08P's formation
23.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>