Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new network of GPS stations to measure movement of the earth’s crust

05.04.2007
This new cross-border network is the first of its kind and was devised to determine the changes in the earth’s crust that are the source of earthquakes and that form the Alpine region’s relief. This system is comprised of 40 fixed high-resolution, continual recording GPS (1) stations. With submillimetric precision (2), the network will also be highly useful for all professionals who work with GPS.

One aim of this project is to increase understanding of seismic risks throughout the Alpine chain and the surrounding regions. Urban zones in full development, as well as some major European centres (Grenoble, Geneva, Torino,…), are concentrated along the mountain chain. Thanks to this new network of GPS stations, it will be possible to continuously measure slow (3) and low amplitude movements in the earth’s crust with great precision. The information provided by the network, added to geologic data on of the fault zones, will contribute to a better localisation of potential seismic sites, their size and their consequences in terms of expected damages in the Alpine region.

The project, begun three years ago, was implemented by 12 partners, including 2 in France: the Laboratory of Internal Geophysics and Tectonophysics (4) at the University Joseph Fournier in Grenoble and the Strasbourg Institute of Earth Physics (5) (IPGS) at the University Louis Pasteur (ULP) in Strasbourg. The IPGS brought its expertise in characterising active faults for seismic risk and measuring deformations with high precision spatial geodetics (6) (GPS).

Of the 40 stations located in the Alpine region, 5 have been acquired by the IPGS thanks to co-funding from the Région Alsace, the CNRS and the European programme Interreg III B – Alpine region. These 5 stations are installed in Alsace on geological sites that meet the specific criteria necessary for such high precision. They complement the 2 existing stations, STJ9 and WELS (7) of ULP’s Earth science Engineering School and Observatory (EOST).

In Alsace, the new GPS network will also be very useful for all potential users of geodesic data on local communities. Cadastral services (property management), surveyors (urban planning, regional development), network managers (water, gas, and telecommunications), cartographers, civil security services, as well as agriculture (land plotting), navigation, transportation, and meteorological services will all find the information highly useful.

1) GPS (Global positioning system) : Geodesic spatial system, that allows three-dimensional positioning (latitude, longtitude, altitude) as well as measurement of time. It has been operational since 1994 ; with 24 satellites, it guarantees full coverage of the globe 24 hours a day.

2) Submillimetric precision: positioning under one millimetre.

3) Slow movements: “slow“ movement is more difficult to study than the “rapid“ movement typical of tectonic regions such as the San Andreas Fault (California) or the Anatolian Fault in Turkey.

4) Joint research unit CNRS/UJF, UMR 5559.

5) Joint research unit CNRS/ULP, UMR 7516.

6) Geodetics: the science that studies the form and dimensions of the earth.

7) STJ9 and WELS: These two stations are part of the observational network of the EOST. STJ9 benefits from support from the Région Alsace. These stations are part of France’s national GPS network (RENAG) of the National Institute for the Sciences of the Universe (CNRS) and the French GPS permanent network (RGP).

Research Contact:
Dr. Jerome van der Woerd
Tél. 03 90 24 03 49
jeromev@eost.u-strasbg.fr

Isabel Pellon Zarragoitia | alfa
Further information:
http://www.u-strasbg.fr

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>