Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass Amherst Scientists Read the History of Rocks Using Custom-Built ‘Ultrachron’

14.03.2007
Assigning dates to the events in the life of a rock—for example, a collision with a piece of continent, or a journey through the Earth’s crust—has long challenged geologists, as the events themselves can confound evidence of the past.

But now, armed with a custom-built machine known as the Ultrachron, University of Massachusetts Amherst scientists are refining a technique that allows them to pin dates to geologic processes with unprecedented precision. The research is already providing new information on the expansion of the North American continent and the growth of the Himalayas, and could help geologists re-evaluate current debates such as the “Snowball Earth” hypothesis.

UMass Amherst geologists Michael Williams and Michael Jercinovic will discuss the new technique at the 42nd annual meeting of the Northeastern Section of the Geological Society of America Monday, March 12, in Durham, N.H. The work also appears in the current Annual Review of Earth and Planetary Sciences.

The life of a rock is often filled with drama—there may be collisions, deforming pressures, intense heat or the scrape and weight of glaciers. Figuring out when something happened to a particular piece of rock has been difficult—methods exist for dating a rock’s absolute age—but scientists trying to determine the dates of a rock’s experiences have had to settle on ballpark figures often many millions of years apart.

In the past decade however, researchers discovered that nature has a version of an airplane’s black box, in the form of a little-known mineral called monazite. Common in a wide variety of rocks, monazite contains uranium and thorium—elements that decay to lead over a predictable length of time—allowing scientists to read the ratios of these elements like a clock. Moreover, monazite grows in distinct layers, or “domains,” and a new domain is added each time the parent rock is altered, making the mineral a powerful tool for dating geologic processes, says Williams.

“It grows a bit like an onion, a new layer is added each time the host rock undergoes some geologic event,” he says. When a new domain forms, its uranium clock begins ticking, so by carefully analyzing each domain in a fleck of monazite, the researchers can set dates to processes that affected the host rock—a collision or a period of melting, for example. “It’s acting like a petrologic tape recorder,” says Williams.

As Williams and Jercinovic continued to work with the mineral, they realized that an instrument built precisely for monazite analysis would be a very powerful tool for getting at all kinds of geologic questions, such as when the oceans formed and how the continents grew. With such a machine scientists could shed new light on current debates, such as the controversial “Snowball Earth” hypothesis, which posits that between 500 million and 700 million years ago, the planet experienced an ice age so severe that the oceans froze over and life on earth was nearly brought to a halt.

So the scientists began discussions with Cameca, the French analytical instrumentation company, and applied for National Science Foundation (NSF) funding to custom-build an instrument for monazite analysis. Typically for this kind of work, researchers would cut and polish a chunk of rock and analyze it with an electron-probe—a machine that directs an electron beam onto a mineral sample and then measures the X-rays and electrons that bounce back. But regular probes couldn’t deal with the tiny samples the researchers were working with—sometimes a mere 20 microns in size, a fraction of the size of a grain of salt. And they needed it optimized for monazite, which is very dense, so its electrons don’t scatter very far, explains Jercinovic.

“We went to the drawing board with Cameca,” he says. “We wanted to take more advantage of our beam so they refined the optics. They improved the brightness of the electron gun and altered the lenses.” The researchers needed high current, but low voltage. Extra large diffracting crystals were made to catch more of the cone of X-rays coming from the sample. After two and a half years of discussion, construction and adjustments, the “Ultrachron” was dedicated at UMass Amherst, an event celebrated in Paris.

As Jercinovic and Williams use the Ultrachron, they continue to refine their technique and the machine. And they are unraveling the complicated history of some very old rocks. A slab of rock from Colorado had a fleck of monazite with a 1.64 billion-year-old domain, a 1.66 billion year-old one and 1.4 billion-year-old tip, likely formed when the host rock was stretched during an ancient faulting event. Former graduate student Kevin Mahan wanted to more precisely date when a chunk of rock in Saskatchewan was thrust through the Earth’s crust to the surface—some evidence said 2.5 billion years ago, some said 1.9 billion years ago. Monazite analyses determined that the host rock’s journey took place around 1.85 billion years ago—leading to new ideas about what the environment was like in the deep crust of North America.

The scientists received additional NSF funding supporting the exploration of this technique, says Jercinovic, giving them a freedom to really develop the best possible methods and parameters for analyses.

“When you look closely the monazite has a meaningfully complicated structure,” says Jercinovic. “And we now have a powerful tool to extract information from that structure—it’s very exciting.”

Michael Williams | EurekAlert!
Further information:
http://www.geo.umass.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>