Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antarctic Ice Sheet's Hidden Lakes Speed Ice Flow Into Ocean, May Disrupt Climate

07.03.2007
Just as explorers once searched the vast reaches of Africa's Nile River for clues to its behavior and ultimate source, modern-day scientists are searching Antarctica for its hidden lakes and waterways that can barely be detected at the surface of the ice sheet.

In a new study, researchers have unearthed how water from this vast subglacial system contributes to the formation of ice streams, and how it plays a crucial role in transporting ice from the remote interior of Antarctica toward the surrounding ocean. Water flowing from this network of under-ice lakes, they say, ultimately affects climate and global sea level.

A research team led by geophysicists Robin Bell and Michael Studinger from the Lamont-Doherty Earth Observatory of Columbia University in New York City, discovered four large, subglacial lakes miles beneath the Antarctic ice sheet's surface. The team was able to link these lakes for the first time to a fast flowing ice stream above and establish that within this 170-mile wide area the lakes contribute to the creation of a major ice stream. The team, which includes scientists from NASA, the University of New Hampshire, Durham, and the University of Washington, Seattle, published their results in the Feb. 22 issue of Nature.

"This connection of major subglacial lakes to the accelerated pace of ice movement deep in Antarctica’s interior is a key piece of the ice sheet stability puzzle," said co-author Christopher Shuman, a physical scientist in the Cryospheric Science Branch at NASA's Goddard Space Flight Center, Greenbelt, Md. "Given the remoteness of the area, we could not have put the picture together without multiple types of satellite data."

Ice streams are large, fast-flowing features within ice sheets that transport land-based ice and meltwater to the ocean. One such stream, the Recovery Glacier ice stream, annually drains the equivalent of eight percent of the huge East Antarctic Ice Sheet, an area larger than the continental United States. The associated Recovery drainage basin, virtually unexplored since an American-led Antarctic ice sheet research trek over 40 years ago, funnels an estimated 35 billion tons of ice into the Weddell Sea annually.

The scientists used a remote sensing technology called interferometric synthetic aperture radar from the Canadian Space Agency’s RADARSAT instrument to measure the speed of the ice flow. They also used visible imagery from sensors aboard NASA’s Terra and Aqua satellites and high-resolution laser data from NASA's Ice Cloud and Land Elevation Satellite to capture small changes in the landscape characteristics of the ice stream indicating the presence of subglacial lakes beneath the ice.

Not only did the scientists find four new lakes, they discovered that the lakes coincide with the origin of tributaries of the Recovery Glacier ice stream. Upstream of the lakes, the ice sheet moves at just a few feet a year; downstream the flow increases to a third of a mile each year. The research team concluded that the lakes provide a reservoir of water that lubricates the bed of the stream, which speeds the flow of ice, and prevents the base of the sheet from freezing to the bedrock.

"It's almost as if the lakes are capturing the geothermal energy from the entire basin and releasing it to the ice stream," said lead author Bell, a senior research scientist at the Lamont-Doherty Earth Observatory. "They power the engines that drive ice sheet collapse. The more we learn about the lakes, the more we realize how important they are to ice sheet stability."

The team's work also suggests that subglacial lakes play a role in sea-level rise as well as regional and global climate change. "Here we found that meltwater at the base of the ice sheet speeds the flow of Recovery ice to the oceans. In turn, that contributes to higher sea levels worldwide," said Shuman. "Floods have been known to originate from the interior of the ice sheet in the past, possibly from systems like these subglacial lakes. These sudden outbursts of fresh water could potentially interfere with nearby ocean currents that redistribute heat around the globe and could disrupt the Earth's climate system."

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/lookingatearth/antarctic_lakes.html

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>