Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists reveal secrets behind supervolcano eruption

07.03.2007
Researchers at Rensselaer Polytechnic Institute have discovered what likely triggered the eruption of a "supervolcano" that coated much of the western half of the United States with ash fallout 760,000 years ago.

Using a new technique developed at Rensselaer, the team determined that there was a massive injection of hot magma underneath the surface of what is now the Long Valley Caldera in California some time within 100 years of the gigantic volcano’s eruption. The findings suggest that this introduction of hot melt led to the immense eruption that formed one of the world’s largest volcanic craters or calderas.

The research, which is featured in the March 2007 edition of the journal Geology, sheds light on what causes these large-scale, explosive eruptions, and it could help geologists develop methods to predict such eruptions in the future, according to David Wark, research professor of earth and environmental sciences at Rensselaer and lead author of the paper.

The 20-mile-long Long Valley Caldera was created when the supervolcano erupted. The geologists focused their efforts on Bishop Tuff, an expanse of rock that was built up as the hot ash cooled following the eruption. The researchers studied the distribution of titanium in quartz crystals in samples taken from Bishop Tuff.

A team from Rensselaer previously discovered that trace levels of titanium can be analyzed to determine the temperature at which the quartz crystallized. By monitoring titanium, Wark and his colleagues confirmed that the outer rims of the quartz had formed at a much hotter temperature than the crystal interiors. The researchers concluded that after the interiors of the quartz crystals had grown, the magma system was "recharged" with an injection of fresh, hot melt. This caused the quartz to partly dissolve, before starting to crystallize again at a much higher temperature.

Analyses of titanium also revealed that the high-temperature rim-growth must have taken place within only 100 years of the massive volcano’s eruption. This suggests that the magma recharge so affected the physical properties of the magma chamber that it caused the supervolcano to erupt and blanket thousands of square miles with searing ash.

"The Long Valley Caldera has been widely studied, but by utilizing titanium in quartz crystals as a geothermometer we were able to provide new insight into the reasons for its last huge eruption," Wark said. "This research will help geologists understand how supervolcanoes work and what may cause them to erupt, and this in turn may someday help predict future eruptions."

Gabrielle DeMarco | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>