Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A helping hand for our national obsession

19.02.2007
The notoriously dark art of forecasting the British weather is about to get much brighter – thanks to a groundbreaking new survey of the skies over Greenland.

An international team of climate scientists led by the University of East Anglia will measure for the first time the influence of the atmosphere over Greenland and Iceland on the weather in Northern Europe.

The mountainous region at the southern tip of Greenland produces hurricane-strength ‘tip jets’, ‘barrier winds’ and ‘mesoscale cyclones’ which ‘force’ the overturning of the ocean. The atmosphere here also impacts on weather downstream in the UK some three to four days later. The experiment will make detailed measurements of weather features that are influenced by the flow around Greenland. For example, small cyclones known as ‘polar lows’ can sometimes produce heavy snow in North-West Europe.

The pioneering research led by Dr Ian Renfrew of UEA’s School of Environmental Sciences comes at the start of the International Polar Year which begins on March 1 and is launched in the UK by HRH the Princess Royal on Feb 26.

“In Britain we tend to view medium-range weather forecasts with a certain scepticism, so it is very exciting to be part of a project which could significantly improve their accuracy,” said Dr Renfrew.

“Though we have suspected for several years that the mountainous presence of Greenland has a strong influence over our own weather, this will be the first time that its impact has been observed.”

This will be the first time that this area has been targeted with additional meteorological observations aimed at improving subsequent weather forecasts.

Richard Swinbank, who is leading the Met Office team, said: “We will identify areas where additional targeted observations should be particularly beneficial, and afterwards we will check the benefit that the extra observations had on our forecasts.”

The intention is that this targeting will help to improve forecast quality during the experiment, and also help with designing the observational networks of the future.

As well as improving predictions of UK weather, the research will also fill in missing gaps in the existing climate change models, such as those used by the Intergovernmental Panel on Climate Change (IPCC) in its major report on February 2. This will help to improve both the accuracy and the long-term range of climate change predictions.

From February 21 to March 10 the researchers will take to the skies over Greenland in a specially adapted aircraft, supplied by the Facility for Airborne Atmospheric Measurements (FAAM), to conduct the Greenland Flow Distortion Experiment (GFDex) experiment. The team includes scientists from the UK, Canada, Norway, Iceland and the US. The UK Met Office is a project partner and the research is funded by the Natural Environment Research Council (NERC).

Press Office | alfa
Further information:
http://www.uea.ac.uk
http://www.faam.ac.uk/

More articles from Earth Sciences:

nachricht The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht FotoQuest GO: Citizen science campaign targets land-use change in Austria
19.09.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>