Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


“GEOPHYS with a GEEP*” Revolutionary Geophysical Data Collection System

A University of Leicester geologist is taking the lead in the development of a unique instrument that will help professionals such as geologists, archaeologists and engineers automatically collect data about underground structures.

Rather like a sophisticated sledge, the data collection system will move on runners, towed by a small tractor. This gives the advantages over other survey methods of:

- its own GPS navigation system so it automatically records its accurate position

-computerised data logging system to record many sensor instruments simultaneously

- greater stability and smoothness in motion than wheeled vehicles

-keeping the delicate instrumentation on board at a constant height above the ground over rough terrain.

- Surveying continuously for extended periods making surveys fast and efficient.

The Geophysical Exploration Equipment Platform (GEEP) system uses a combination of differential global positioning system (DGPS) and on-board compass to detect its own position, orientation and speed. A wide variety of different instrumentation can be added to adapt the system for different surveys aimed at environmental, archaeological, engineering, hydrological or mineral targets.

The system is very fast in use since no preparatory position marking is needed, with no tapes or pegs in the ground. Fields occupied by livestock can be surveyed with little disruption to either survey or livestock. There is little or no mark or damage on the ground as a result of the survey.

Data measurements from the instruments are recorded by computers on the GEEP system and telemetered to a local base station where an experienced geophysicist can monitor the data quality, carry out initial interpretation of the survey, and adjust the progress of the survey on the basis of the received data, allowing the survey to be adapted to the particular details of the survey site in real-time.

Because of the “open-system” architecture of the system, it can be used in a wide variety of applications such as:

- archaeology similar to “geophys” seen with the television archaeologists, ‘Time Team’

-environmental surveys of “brownfield” sites

- exploration for metals or industrial minerals

but in a much shorter timescale than conventional surveys.

The project, led by Dr Ian Hill, Senior Lecturer in Geophysics at Leicester, was funded by a two-year Knowledge Transfer Partnership (KTP) and is now reaching its conclusion. The complete system is currently being tested at the University of Leicester.

Dr Hill and his research associate have been working with the company, Geomatrix Earth Science Ltd, who are marketing the system commercially. Geomatrix Earth Science Ltd is one of the largest rental sources for Environmental Geophysical Instrumentation in Europe.

Dr Hill commented: “We have been working with Geomatrix on various stages of this project for over 5 years and this is an exciting and rapidly developing area as we incorporate new developments in navigation, and computer technology. The system is now available commercially Europe-wide, and the first commercial system are being shipped during December.”

*GEEP trademark Geomatrix Earth Science Ltd. (pronounced ‘JEEP’)

Ather Mirza | University of Leicester
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>