Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Reveals Hidden Earthquake Trouble Spots

08.11.2006
A team from the University of Leicester has used a powerful laser mounted on an aircraft to uncover earthquake fault lines that are hidden by forest cover and never before seen by earth scientists.

The 2005 Kashmir earthquake was a terrifying example of how faults in mountainous regions that pose serious seismic hazards can go unnoticed because they are hidden by forest cover and thus are not easily identified.

Now the scientists from the Departments of Geology and Geography at the University of Leicester in the UK have developed a technique that can be used in mountainous terrain to virtually deforest the landscape and reveal details of the forest floor topography, including the traces of active faults.

The scientists have pioneered use of the laser probe to map active fault systems in Europe and made the first ever use of the technique to survey high-relief alpine landscapes.

The Leicester team has demonstrated that airborne LiDAR (an acronym for light detection and ranging – essentially a powerful laser mounted on an aircraft), can detect traces of active faults.

Dr Dickson Cunningham in the Department of Geology and Dr Kevin Tansey in the Department of Geography collaborated on a NERC funded project to map the distribution of recently active earthquake-prone faults in the southeastern Alps in Slovenia.

Their key research results are now published in the latest issue of Geophysical Research Letters. The work was further supported by a Masters student in Geography, Mr. Stephen Grebby.

Dr Cunningham said: “Locating earthquake-prone faults in forested mountainous regions and understanding the potential seismic hazard they pose to local population centres has always been a problem to geoscientists.

“Many regions of the world have undiscovered seismically active faults hidden by dense forests, including Indonesia, India, NW North America, all Andean nations and the alpine countries of Europe. Unfortunately for people living in these regions, these faults can be ticking time bombs.

“We have demonstrated that airborne LiDAR can be used in mountainous terrain to virtually deforest the landscape and reveal details of the forest floor topography, including the traces of active faults.”

Dr Cunningham reports that the research involved collaborative efforts with Slovenian geoscientists and InfoTerra, a global geo-information supplier based in Leicester.

The topographic images derived from LiDAR data of two major plate boundary faults, the Idrija and Ravne strike-slip faults in Slovenia, reveal geomorphological and structural features that shed light on the overall architecture and movement history of both fault systems.

He added: “For the first time, we are able to see how the faults connect at the surface and cut the landscape. This allows us to assess whether the faults are likely to produce large earthquakes or small events in the future. The images also allow efficient identification of sites suitable for detailed fault analysis to calculate the recurrence interval of major earthquakes and make probabilistic estimates of the timing and magnitude of the next major earthquake.“

A field excursion in August 2006 verified the remote observations. Dr Tansey said: “As we trekked through the forest we found overwhelming evidence for previous fault activity, never before seen by earth scientists. We are now building on our initial results with follow-up research and have established the UK’s first inter-disciplinary LiDAR research unit here at Leicester with support from the Ordnance Survey and the British Geological Survey.”

| alfa
Further information:
http://www.le.ac.uk/geography/research/unit_llru.html

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>