Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers of the UGR analyse historical earthquakes to design risk maps to prevent future damages

27.10.2006
Just a few months ago a tsunami devastated the coast of Indonesia and left more than 190,000 people dead.

The lack of prevention measures and the ignorance of the real risks in an area with such seismic activity were some of the factors that increased the effects of the seaquake. To avoid similar events in future in the South of Spain, a research team of the University of Granada, in collaboration with Italian scientists, has set a project that has analysed the epicentres of the earthquakes happened in the past to determine the risks they could cause in future.

Until the moment, nobody knew the exact point where the disasters started, like the earthquake of Alhama in 1884 or that of Malaga in 1680, as the seismic stations that record the earthquakes and send the signal to the observatories to determine their localization did not start to work all-out until the beginning of the 20th century. According to the geo-physicist and professor of the UGR [http://www.ugr.es] Jesús Ibáñez Godoy, “the only trace that remains of historical earthquakes is their capacity for destruction, but in most cases we do not know their epicentre, a very important data if we take into account that they could happen again in future with the same intensity and in the same place”.

In this sense, Ibañez points out that very often the epicentre of the earthquake was not in the devastated area –this is the case of Alhama and of the earthquake that destroyed Lisbon in 1755 whose centre was in Cape San Vicente- but in a nearby area that due to the absence of population did not suffer the effects so much. But, several centuries later, such areas, where there were movements of six degrees in the Richter scale, could be inhabited, and therefore it is so important to determine “where the earthquakes originated”.

Location

The method used by geophysicists of Granada to locate the epicentre of the seismic movements that took place several centuries ago has been the distribution by areas through a mathematical technique designed by them of the areas where the damages occurred to locate from there where the epicentre was.

The data extracted from this work are very useful to prepare risk maps. They will take into account not only the areas destroyed by the earthquake, but also the place where it originated and, therefore, the most liable to suffer damages in future. But this new contribution will not only be useful to get to know something more about the seismic past of the south of Spain but also to “carry out prevention measures that consider feasible construction formulas, edifications in compacted lands r the exact location of the areas that run higher risks in future to avoid major damage”, Ibáñez says.

Antonio Marín Ruiz | alfa
Further information:
http://www.ugr.es
http://prensa.ugr.es/prensa/research/index.php

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>