Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Technology Captures Massive Hurricane Waves

27.09.2006
A hurricane's fury can be relentless, from frightening winds, to torrential rains and flooding. These storms also create enormous ocean waves that are hazardous to ships. And through storm surges of up to 30 feet the storms can demolish shoreline structures, erode beaches and wash out coastal roads.

As part of its activities to better understand Earth’s dynamic climate, NASA research is helping to increase knowledge about the behavior of hurricane waves. The NASA Scanning Radar Altimeter (SRA), designed to take measurements of the changing wave height and structure in and around hurricanes, flew through many storms on a National Oceanic and Atmospheric Administration (NOAA) WP-3D aircraft from 1998-2005. It captured unprecedented details on wave behavior that are helping improve sea height forecasts. Strong storms like Hurricane Bonnie in August 1998 - the first to be monitored by SRA - were found to produce severe ocean waves and dramatic changes in wave height and complexity over small distances.

The SRA measures waves by sweeping a radar beam across the ocean and measuring the distance to the sea at many points. Those distances are then subtracted from the aircraft altitude to produce a sea-surface elevation map that is displayed on a monitor in the aircraft.

While the flight portion of the SRA hurricane research program concluded with the 2005 hurricane season, the data gathered continue to help researchers develop and improve ocean wave computer models that simulate hurricane-generated ocean wave height, dominant wavelength, and wave direction.

These computer models allow wave behavior to be predicted at times and places where there are no observations. However, actual observations from SRA are essential because "they tell us how the wave field - the height, length and direction of waves in a given area – actually varies with a hurricane's wind speed, size, and forward motion so that we can improve the performance of the models that disaster managers and structural engineers rely on for guidance," said C. Wayne Wright, NASA Wallops Flight Facility, Wallops Island, Va.

Ongoing research efforts have shown that ocean wave height responds rapidly to changes in a storm's wind speed. But scientists believe the overall wave field is also driven by the size or radius of a storm's strongest winds, and its forward speed. In Hurricane Katrina in August 2005 the largest waves, up to 40 feet, were found near the strongest winds. In September 2004, scientists with the Naval Research Laboratory-Stennis Space Center, Bay St. Louis, Miss., measured a record-size ocean wave - a whopping 91 feet - when the eye wall of Hurricane Ivan passed over sensors in open water over the Gulf of Mexico.

"Ocean depth is another critical factor in wave height," said Edward Walsh, NASA Wallops Flight Facility, Wallops Island, Va. "Our observations from Hurricane Bonnie indicated that as soon as the waves encountered the continental shelf - the underwater extension of the coastal plain - their length began to shorten and they became steeper. As the water became shallow, wave height plummeted."

Similarly, with Hurricane Rita in September 2005, the wave height dropped dramatically and was only 9 feet when wave energy was lost due to the shoaling of water on the continental shelf - the process in which waves coming into shallow waters are slowed by friction and become closer together and steeper.

Fortunately, a storm's most massive waves usually decrease in size when they interact with the ocean's continental shelf and other land forms, like "barrier islands" that form a thin protective wall between the open sea and the mainland. The islands absorb the strongest waves, sheltering the mainland during large storms. But with powerful storms like Katrina, the constant battering of waves can take a toll on the land, leaving the islands reduced or gone altogether.

SRA's detailed and precise information, together with data to be gathered by a new operational SRA being built by NOAA to replace the NASA prototype, promises to provide additional insight into a hurricane's behavior. Such research is increasingly important as areas become more prone to higher storm surges as natural defenses like barrier islands and wetlands disappear.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2006/hurricane_waves.html

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>