Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change was major factor in erosion of Alps 6 million years ago

17.08.2006
The Alps, the iconic rugged mountains that cover parts of seven European nations, might have reached their zenith millions of years ago, some scientists believe, and now are a mere shadow of their former selves. New research offers an explanation.

A team led by Sean Willett, a University of Washington geologist, has found that the culprit is likely massive erosion, triggered by a sudden drop in the level of the Mediterranean Sea 6 million years ago and then prolonged by a warmer, wetter climate.

Typically mountain ranges reach a sort of equilibrium, with erosion more or less keeping pace with the tectonic forces that enlarge the mountains. But an event called the Messinian salinity crisis, precipitated by blockage of the forerunner of the Strait of Gibraltar, cut the Mediterranean off from the rest of the world's oceans. Evaporation greatly reduced the water level, dropping it as much as two or three miles below the rest of the world's ocean surfaces.

The beds of rivers flowing from the Alps dropped sharply as the level of the Mediterranean basin fell, and their force carried away huge amounts of sediment. The forces carved many of the distinctive deep valleys for which the Alps are known and left behind nearly a dozen major alpine lakes in the southern Alps.

"The erosion rates were 10 times normal in the salinity crisis, and that correlates to the fall of the base level of the rivers," said Willett, a UW associate professor of Earth and space sciences. "We think that jump-started the erosion, but it doesn't explain why the erosion stayed so high for 3 million years. The Mediterranean was low only for 20,000 to 80,000 years before it refilled."

The Mediterranean substantially refilled with fresh water, likely from heavy rainfall, indicating major climate change. The result was a brackish water mixture that probably continued to evaporate at high levels, Willett said. About 200,000 years later, the Atlantic Ocean finally breached Gibraltar and seawater poured in, apparently refilling the Mediterranean completely within a few years.

"Probably the biggest erosion came when there was both the heavy rainfall and the low base level of the rivers," he said.

Willett is the lead author of a paper describing the findings, published in the August edition of the journal Geology. Co-authors are Fritz Schlunegger of the University of Bern in Switzerland and Vincenzo Picotti of the University of Bologna in Italy. The work was funded by the National Science Foundation.

The scientists studied geological structures associated with the Alps, particularly faults at the southernmost edge of the mountain range, in northern Italy. They found numerous faults buried beneath the surface of the plain adjacent to the Po River, which flows through Italy's largest industrial region and is the nation's longest river.

The fault that lies farthest south, now inactive, is beneath the city of Milan, evidence that the Alps used to extend that far south, Willett said. Now the mountains are 30 to 50 miles away.

"At one time what is now Milan would have been in the foothills of the Alps," he said. "But the Alps never regained the size they had at the end of the Miocene."

The researchers found that the greatly increased erosion came at the same time that the faults associated with the Alps stopped moving. Less erosion would be expected as tectonic forces decline, Willett said, but instead there was vastly more sediment removed from the mountains at the time the fault motion stopped.

Before the massive erosion, he said, the Alps likely were 60 to 120 miles wider than they are today, and 1,000 to 5,000 feet higher. The highest point today is Mount Blanc on the border of France and Italy, at about 15,700 feet. It is likely that erosion took a toll on the northern edges of the Alps as well, Willett said.

After 3 million years of warm and wet conditions, the climate cooled again and glaciers formed in the Alps, though they are again in decline now because of climate warming. Willett noted that European precipitation is strongly linked to changes in the global mean temperature, which scientists can track over time through ice records.

"What is fascinating to me is that we show how complicated and coupled the Earth system is," he said. "You have to understand one part of the system to understand how other parts of it work together."

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>