Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking Earth's Wobbles Down to the Size of a Cell Phone

26.06.2006
New technologies are enabling scientists to determine precisely the extent and causes of Earth's short-term wobbling. Like a spinning top, Earth wobbles as it rotates on its axis. In fact, it displays many different wobbling motions, ranging in period from a few minutes to billions of years. Some of these are well studied, like the Chandler wobble of 433 days and the annual wobble, which together can tilt Earth's axis up to 10 meters [30 feet] from its nominal center.

Earth's irregular, shorter term wobbles, lasting a week or so, have been more difficult to study, partly because these motions are usually masked by those of more prominent wobbles. Now, scientists in Belgium and France have taken advantage of a quirk in the pattern of large-scale motions and the advent of the Global Positioning System (GPS) to pin down short-term wobbles that occurred from November 2005 through February 2006.


Motion of the North Pole, as determined by the IERS. Earth Orientation Parameter Center of the Paris Observatory, for the study period, 1 November 2005 to 14 February 2006. Each marker represents the position of the pole on one day. Five loops are identified. Never before have these small polar movements been traced with such precision.

During this period, the Chandler wobble and the annual wobble essentially cancelled each other out, an event that occurs every 6.4 years, allowing the researchers to focus on the short-period wobbles. Over these three and a half months, the pole position traced small loops, ranging in size from that of a sheet of A4 [8-1/2x11 inch] paper down to that of a cell phone, and it remained within a one meter [yard] square during these four months.

Sebastien Lambert of the Royal Observatory of Belgium and colleagues there and at the Paris Observatory took advantage of the opportunity to track short-term wobbles, using newly available GPS data that establish the location of the poles precisely. They then sought to determine why these motions occurred when they did.

In a paper scheduled to be published 1 July in Geophysical Research Letters, they conclude that weather patterns in the northern hemisphere played a significant role. Both the location of high- or low-pressure centers--for example, over Asia or northern Europe--and the relationship of these weather systems to each other played a measurable role in creating, or "exciting," small, short-term wobbles, they report.

The ocean also affects short-term wobbles, according to Lambert and his colleagues. They were able to correlate oceanic and atmospheric pressure variations with the small observed wobbles during the study period. Although these forces had been credited by previous researchers with maintaining the large Chandler wobble, this was the first time that scientists have been able to demonstrate that day-to-day changes in atmospheric pressure produce a measurable effect on Earth's rotation.

The study was funded by the Belgian Science Policy Office, the Royal Observatory of Belgium, and the Paris Observatory.

Harvey Leifert | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>