Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New satellite set to collect most-detailed data yet about atmospheric particles

14.06.2006
A new satellite that last week began gathering data from the Earth's atmosphere could be a key tool in unraveling just how much effect the reflectivity of clouds and tiny particles called aerosols are having on the planet's changing climate.

For University of Washington atmospheric scientists Robert Charlson and Theodore Anderson, co-investigators on the CALIPSO satellite's science team, there are two key parts to the research: determining the effects of aerosols on climate in cloudy skies and in clear skies.

"Much of the Earth is covered by broken clouds. If you look down at any big patch of clouds, often you will see that it is really made up of broken clouds," said Charlson, a UW atmospheric sciences professor. "That suggests that there could be an intermediate state between clear and cloudy conditions that has a considerable effect on climate, and it appears to be very sensitive to changes in aerosol levels."

Aerosols are tiny particles suspended in the air, such as bits of dusty ash from volcanoes, smoke and haze from combustion, soil dust from desert storms and salt from evaporating sea spray. They float in the atmosphere, absorbing some sunlight and reflecting some back into space, but no one knows just how much effect they have globally. Charlson and Anderson say that remains one of the biggest unanswered questions about human-induced climate change.

Scientists around the world hope to begin getting answers from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite, dubbed CALIPSO, which was launched from Vandenberg Air Force Base in California on April 28. Since then its instruments have been preparing to collect detailed information. It is flying in a formation called the A-Train, a lineup of six satellites, each gathering different information about the Earth's atmosphere. CALIPSO is fourth in the formation, traveling just a few seconds behind a satellite called CloudSat, which was launched on the same rocket and will provide radar data on thick clouds, complementing CALIPSO's lidar data on thin clouds and aerosols.

Satellites for many years have produced pictures showing the Earth swathed in clouds. More recent instruments also identify aerosol plumes from dust storms, forest fires, industrial pollution and the like. While valuable, those data mainly provide a two-dimensional perspective, with no precise information about the altitude of the clouds and aerosols. CALIPSO will use lidar – a measuring tool like radar except that it employs laser light rather than radio waves – to measure the specific altitudes of clouds and aerosols to within about 100 feet, a groundbreaking advance on current satellite capabilities.

"For the first time we will have access to global data telling us the altitudinal location of clouds and haze plumes in the atmosphere," said Anderson. "This is going to greatly advance the space-based study of aerosol-and-cloud interactions because we will have authoritative knowledge about whether the aerosol layer and the cloud layer are really at the same level in the atmosphere."

Even a seemingly clear sky can have some cloudiness. But lidar can detect it even if it is not readily visible, Charlson said. He and Anderson will focus on determining how much of that "subvisible" cloudiness there is around the world and what its properties are. From that information, they expect to eventually be able to establish the impact on climate change. If these unseen clouds, which they hypothesize are partly caused by high aerosol concentrations, cover only one-tenth of a percent of the Earth's atmosphere the effects would be negligible, Charlson said. But if the coverage is 1 percent it is a concern, and 10 percent coverage "would be a very big deal."

"We suspect it is several percent," he said.

Charlson noted that the satellite's lidar equipment uses an eye-safe laser that actually might be glimpsed in a hazy sky or on snow cover. It would be visible as a row of green dots about 250 feet across and 800 feet apart, but it could only be seen at night in a very dark sky, most likely from an airplane looking down at snow cover or clouds. To see it, a person would have to know precisely when the satellite will pass a certain spot, and would have to be watching very closely – the satellite will pass at more than 15,000 miles per hour and at an altitude of more than 430 miles. It also is possible that, in hazy conditions at night, the green laser beam might suddenly appear as a flashed row of vertical stripes in the sky.

Lidar data have been collected previously – Charlson noted that the concept of using an orbiting lidar to gather atmospheric information was proven on a 1994 Space Shuttle mission – but it was a small amount of information and few scientists could use it. Scientists around the world will be able to use the CALIPSO data, he said.

The satellite also is equipped with other scientific instruments that will collect information about the structure of clouds and aerosols. All of the information gathered will be important to those using computer models in trying to understand the mechanics of climate change and how it is likely to play out in the future.

The mission, in development for more than 10 years, is a collaboration among the National Aeronautics and Space Administration, the Centre National d'Etudes Spatiales of France, the Institut Pierre Simon Laplace in France, Hampton University in Virginia and Ball Aerospace & Technologies Corp. NASA's Langley Research Center is project manager and the Goddard Space Flight Center is providing support. Numerous scientists from around the world are co-investigators and science team members for CALIPSO.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu
http://www.nasa.gov/calipso
http://www.uwnews.org

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>