Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT studies undersea channels for oil recovery

23.05.2006


Work in an MIT lab may help energy companies withdraw millions of additional barrels of oil from beneath the sea floor.

Typically, companies recover only 30 percent to 40 percent of the oil in a given reservoir. Since a single reservoir may contain a billion barrels total, increasing that "recovery efficiency" by even a single percentage point would mean a lot of additional oil.

Toward that end, Assistant Professor David Mohrig of earth, atmospheric and planetary sciences and Carlos Pirmez, a research geologist from Shell International Exploration and Production Inc., have been examining one type of geological formation of interest to industry -- channels filled with highly permeable and porous sedimentary deposits that extend deep below the sea floor.

These structures form when sediment-laden currents flow off the continental shelf and into channels on the deep-ocean floor, dropping sand, silt and clay as they go. Over many thousands to millions of years, the channels can become filled with porous sandstone covered by impermeable mud -- a perfect trap for oil and gas that seep up from below.

Over the past 20 years, energy companies have withdrawn significant amounts of oil from such buried channels. But they could extract even more if they understood the channels’ internal structure.

"If we could understand how they develop, then we would also understand a great deal about what they’re composed of -- the distribution of clay, silt, sand and even gravel that they’re built out of," Mohrig said. With a better understanding of porosity and permeability within a channel, companies could more accurately determine how much oil is present, where it is located and how quickly it can be withdrawn.

Researchers have been re-creating the formation of submarine channels in Mohrig’s Morphodynamics Laboratory using a 5-meter-square sand table.

The experiments have yielded results that the collaborators call "counterintuitive." On a map, the sinuous submarine channels look like meandering surface rivers. However, they exhibit behaviors that are markedly different and -- to us surface-dwellers -- totally unexpected.

The behaviors stem from differences in density. Water in a river is about a thousand times denser than the fluid it flows through -- air. As a result, a flow tends to remain confined to its riverbed, escaping over the banks only rarely. In contrast, the current running through a submarine channel may be only 10 percent denser than the seawater around it. Thus, the current can spill out of its channel more easily and frequently than a river might.

That difference explains several unexpected findings. For example, at times the bottom of the current sloshes almost all the way up the edge of the channel and then back down again. And at bends, the current may go straight, pouring up and over the bank and dropping its sediment outside the channel -- an outcome with important implications for energy companies as they plan to drill.

Because of their close and continuing involvement in the scientific investigation, the Shell researchers are prepared to put the research findings to practical use. "The experiments that David is doing have never really been done before, so we’re learning new things about how channels are put together," Pirmez said. "We’re getting new ideas, new concepts that may change the way we think about the subsurface."

The result should be improved predictions, reduced uncertainty and more efficient recovery from these oil-rich submarine formations.

This research was supported by Shell International Exploration and Production Inc. through the MIT Department of Earth, Atmospheric and Planetary Sciences.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>