Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using satellite observations to study photosynthetic trends in northern circumpolar high latitudes

19.05.2006


Using time series analyses of a 22-year record of satellite observations across the northern circumpolar high latitudes, scientists at the Woods Hole Research Center are assessing trends in vegetation photosynthetic activity. The results indicate that tundra areas consistently and predominantly show greening trends while forested areas show browning, indicating that the boreal forest biome might be responding to climate change in previously unexpected ways. This research is highlighted in the current issue of Earth Interactions.



According to Andrew Bunn, lead author of the paper and a post-doctoral fellow at the Center, "This research suggests that the high latitudes might not be responding to climate change as previously thought. If the ability of boreal forests to capture and store carbon in a warmer world is not as great as we’ve previously supposed, then we will have to think differently about how the planet will respond to continuing emissions of carbon dioxide."

All land surfaces above 50° N, excluding the glaciers of Greenland, were included in this study. Growing seasons were defined as May to August though early and late growing season periods were also considered. Three primary data sets derived from polar-orbiting satellites were used.


Overall, tundra areas show marked greening over the entire growing season. These patterns were consistent with relatively simple climate response seen in related work in North America, where areas responded to summer maximum temperatures while the response of forest vegetation was more complex. Boreal forests patterns indicate significant greening in May and June, with gains offset by substantive browning in July and August.

These results illustrate a need for an expanded observational network, additional analysis of existing data sets, including tree rings, and improvements in process models of ecosystem responses to climate change.

According to Scott Goetz, a senior scientist at the Center and co-author of the paper, "This work extends our previous analyses by specifically considering issues of vegetation type and density over this vast region, as well as differences in seasonality of photosynthetic gains and losses. Rather than a systematic greening of high latitudes with warmer temperature, we are seeing a more nuanced and surprisingly rapid response to changes in climate. What we’d like to know is whether these trends will continue to result in forest decline, exacerbating the impact of warming, or will the forests somehow be able to adapt? Models can tell us what is likely to occur, but we are most anxious to see what the satellite observations will reveal over the next few years."

Dr. Bunn is an ecologist interested in understanding climate change impacts on the biosphere. He is particularly interested in understanding the natural range of climate variability over the last two thousand years using natural archives of past temperature and precipitation derived from tree rings. He was awarded a Canon National Parks Science Scholarship in 2001 for work combining tree rings, remote sensing, and computer simulations of high elevation forests in Sequoia National Park. He earned a master’s degree from Duke University and a doctorate from Montana State University.

Dr. Goetz works on the application of satellite imagery to analyses of environmental change, including monitoring and modeling links between land use change, forest productivity, biodiversity, climate, and human health. Before joining the Center, he was on the faculty at the University of Maryland for seven years, where he maintains an adjunct associate professor appointment, and was a research scientist at NASA’s Goddard Space Flight Center. He received his Ph.D. from the University of Maryland.

Elizabeth Braun | EurekAlert!
Further information:
http://www.whrc.org

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>