Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cornell study of ancient volcano, seeds and tree rings, suggests rewriting Late Bronze Age Mediterranean history

02.05.2006


Separated in history by 100 years, the seafaring Minoans of Crete and the mercantile Canaanites of northern Egypt and the Levant (a large area of the Middle East) at the eastern end of the Mediterranean were never considered trading partners at the start of the Late Bronze Age. Until now.



Cultural links between the Aegean and Near Eastern civilizations will have to be reconsidered: A new Cornell University radiocarbon study of tree rings and seeds shows that the Santorini (or Thera) volcanic eruption, a central event in Aegean prehistory, occurred about 100 years earlier than previously thought.

The study team was led by Sturt Manning, a professor of classics and the incoming director of the Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology at Cornell. The team’s findings are the cover story in the latest issue of Science (April 28).


The findings, which place the Santorini eruption in the late 17th century B.C., not 100 years later as long believed, may lead to a critical rewriting of Late Bronze Age history of Mediterranean civilizations that flourished about 3,600 years ago, Manning said.

The Santorini volcano, one of the largest eruptions in history, buried towns but left archaeological evidence in the surrounding Aegean Sea region. As a major second millennium B.C. event, the Santorini eruption has been a logical point for scientists to align Aegean and Near Eastern chronology, although the exact date of the eruption was not known.

"Santorini is the Pompeii of the prehistoric Aegean, a time capsule and a marker horizon," said Manning. "If you could date it, then you could define a whole century of archaeological work and stitch together an absolute timeline."

In pursuit of this time stamp, Manning and colleagues analyzed 127 radiocarbon measurements from short-lived samples, including tree-ring fractions and harvested seeds that were collected in Santorini, Crete, Rhodes and Turkey. Those analyses, coupled with a complex statistical analysis, allowed Manning to assign precise calendar dates to the cultural phases in the Late Bronze Age.

"At the moment, the radiocarbon method is the only direct way of dating the eruption and the associated archaeology," said Manning, who puts Santorini’s eruption in or just after the range 1660 to 1613 B.C. This date contradicts conventional estimates that linked Aegean styles in trade goods found in Egypt and the Near East to Egyptian inscriptions and records, which have long placed the event at around 1500 B.C.

To resolve the discrepancy, Manning suggests realigning the Aegean and Egyptian chronologies for the period 1700-1400 B.C. Parts of the existing archaeological chronology are strong and parts are weak, Manning noted, and the radiocarbon now calls for "a critical rethinking of hypotheses that have stood for nearly a century in the mid second millennium B.C."

Aegean and Near Eastern cultures, including the Minoan, Mycenaean and Anatolian civilizations, are fundamental building blocks for Greek and European early history. The new findings stretch Aegean chronology by 100 years, a move that could mean alliances and intercultural influences that were previously thought improbable.

The new results were bolstered by a dendrochronology and radiocarbon study, led by Danish geologist Walter Friedrich and published in the same issue of Science, which dated an olive branch severed during the Santorini eruption and arrived independently at a late 17th century B.C. dating.

This work, Manning added, continues Cornell’s leading role in developing a secure chronology for the Aegean and Near East headed by Professor Peter Kuniholm, who founded the Aegean Dendrochronology Project 30 years ago. "I came to Cornell in 1976 with half a suitcase of wood. Now we have an entire storeroom with some 40,000 archived pieces that cover some 7,500 years," said Kuniholm.

Graduate student Alex Kwan is a writer intern with the Cornell News Service.

Blaine P. Friedlander Jr. | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>