Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sumatra megaquake defied theory

29.03.2006


The risks of Sumatra-style mega-quakes around the world have been sorely misjudged, say earth scientists who are re-examining some of the pre-December 2004 assumptions scientists made about such rare events.

For more than two decades geologists had thought that the largest quakes, of magnitude 9 and greater, happen when a young tectonic plate is subducted, or shoved quickly, under another plate. But the Great Sumatra-Andaman earthquake of 26 December 2004 didn’t match that pattern at all. The Indian Plate is middle-aged and moving at a middling rate, which throws into question the estimated quake dangers at other similar quake-prone zones near Japan, in the Pacific Northwest, Chile, Alaska, and elsewhere.

"We didn’t expect such a big earthquake in that location," said Emile Okal of Northwestern University. Okal is slated to speak about how the Sumatra-Andaman quake calls into question theoretical assumptions made about other similar dangers zones worldwide and especially in South America on Thursday, 6 April, at Backbone of the Americas - Patagonia to Alaska. The meeting is co-convened by the Geological Society of America and Asociación Geológica Argentina, with collaboration of the Sociedad Geológica de Chile. The meeting takes place 3-7 April in Mendoza, Argentina.



Previous to the catastrophic 26 December 2004 earthquake, the theory about how subduction zones generate quakes was straightforward, says Okal. It boiled down to age and speed. Where an older, colder and therefore denser slab of crust is being pushed slowly under another plate, "It will want to sink," he said. As a result there’s not a lot of stress building up to cause large quakes.

At the other end of that same spectrum are subduction zones where young, buoyant crust is being forced quickly under another plate. The rate of "convergence" and the fact that the young crust resists sinking causes lots of stress to build up and results in much larger quakes.

"So you could take a map of all the subduction zones of the world and look at it," said Okal. "The red areas were ones with younger, faster moving crust and the blue areas were older, slow moving crust."

The theory seemed tidy enough and could be verified somewhat by dating the crust, measuring the rates entire tectonic plates seemed to be moving at, and estimating the power of past quakes from historical accounts. According to the theory, the Sumatra subduction zone was capable of no more than a magnitude 8 earthquake, Okal explains.

"The cold shower we got was Sumatra," said Okal. "We have a 9.3 on our hands. You got a point that violates the plan outrageously."

Fortunately, says Okal, the science of plate tectonics has made great strides since the 1980s and the danger map now can be greatly refined and reassessed. For instance, where once researchers looked to the centers of plates to see how fast they may be colliding at the edges, Global Positioning System technology now allows geophysicists to track specific movements and deformation in the actual subduction zone.

The result is that some places may be at greater risk of large quakes, and others may be at lesser risk. "Suddenly there are points moving up and down when you reassess them," he said.

It’s been discovered, for instance, that despite being one of the best big-quake factories on the planet, the convergence of the Nazca Plate and the South American Plate on the Pacific Coast of South America is happening at a significantly slower rate than previously thought, says Okal.

On the other hand, some subduction zones have quakes that do not directly express the subduction - and so have inflated the apparent risk of a large event. One example is in the Caribbean where, besides a subduction zone, there are quakes that occur along strike-slip, San Andreas-type, faults. These faults accommodate sideways movement in the collision zone instead of the blunt shoving of one plate under another. "So we are reassessing this whole area," said Okal. There is also the matter of how subduction zones let loose their built-up energy. They can break along small segments, together or individually. One segment might produce a moderate quake. But if four or five segments all go at once you get a colossal release of seismic energy, like that seen when the Sumatra-Andaman zone "unzipped" for 800 miles (nearly 1,300 kilometers) on that terrible day 15 months ago.

"The bottom line is that we have to be very humble," said Okal. We don’t know how to predict the size of quakes, he said, and we should not discount that there will be surprises.

WHEN & WHERE
Backbone of the Americas - Patagonia to Alaska
Centro de Congressos
Mendoza, Argentina
Thursday, 6 April 2006

Ann Cairns | EurekAlert!
Further information:
http://www.geosociety.org
http://www.earth.northwestern.edu

More articles from Earth Sciences:

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>