Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite flood mapping service strengthens eastern France civil protection

21.03.2006


A satellite-based rapid mapping service developed to support civil defence activities in eastern France is ready and on call 24 hours a day, seven days a week. The pioneering service has been designed to manage flood events – the world’s most widespread category of natural disaster.


Satellite view of the Meuse River flood



As well as being applied to risk assessment and prevention efforts, the ESA-backed Flood Plain Monitoring Service aims to deliver map products to end users within six hours during times of crisis, giving emergency responders the ability to track the full extent of floods as they occur.

Developed over three years through the ESA Earth Observation Market Development (EOMD) programme, the service was consolidated with the France’s Eastern Defence Zone (EDZ), which is made up of 18 departments with a total area of 105 000 sq. km and a population of 8.3 million people. It also includes four major hydrological basins potentially vulnerable to flooding. The service provider is Strasbourg–based rapid mapping specialist firm SERTIT, with the EDZ Prefecture as partner end-user.


"We are one of France’s seven national civil defence zones," explained Colonel François Maurer on behalf of the French Directorate of Civil Defence and Security (DDSC), Chief of Staff (Chef d’état-major) of the EDZ.

"Our role is to carry out emergency planning, and, in the event of an incident, coordinate the response activities of the various departments. Department prefects are the main decision makers who activate the emergency services but may not have specialist knowledge in the field, so we advise them as needed."

The service is based on two types of satellite data. High-resolution imagery from optical satellites is combined with satellite radar imagery which can be acquired even at night or through heavy cloud or rainfall.

The large amount of detail found in optical images is used in advance to create reference land cover maps that can be combined when needed with radar images that are highly sensitive to waterlogged surfaces. These images can also be utilised in conjunction with digital elevation models (DEMs) derived from radar data to help model which areas are most at risk.

"We don’t mind which satellites are used, we just want the maps," said Colonel Maurer. "Our key issue is time – but very quickly the satellite maps give us an impression of the flood extent, and the areas that are affected. The maps can support high-level decision making and the best use possible of human and material resources.

"We can interpret them to see the extent to which the water is going to extend, to help steer our teams around and figure out where best to deploy our pumps and sandbags, where to evacuate first. New buildings may not have made it yet onto standard paper maps, but might still need priority evacuation: hospitals, for example, or homes for the elderly. It is better to perform something like that well in advance rather than when feet are already in the water!"

The service was initially designed for flood crisis mapping, but it was soon realised the products would also be relevant for other flood management phases: the post-crisis clean up, prevention and forecasting. Some 80 agencies involved in flood management within the EDZ – such as regional water agencies and flood forecast services – have therefore been briefed on utilising the service.

During the last decade floods have affected approximately 1.5 billion people – more than 75% of the total number of people reported as affected as natural disasters worldwide. They are catastrophic events affecting large areas at once, which can make them difficult to predict and monitor.

Traditional flood forecasting is carried out using river height and rainfall measurements – often only sparsely available - assimilated into hydrological models. Flood extent is often calculated through historical analysis of maps of past events, or model calculations. ‘Real-time’ flood measurements, if made at all, are carried out through expensive and weather-dependent aerial photography campaigns. Post-crisis damage mapping traditionally relies on ground surveys, projections from population statistics and insurance damage claims.

"One of the objectives is to keep detailed satellite-derived maps of past flood events and their evolution, to build an accurate memory of what has happened across our area of interest," added Colonel Maurer.

The Flood Plain Monitoring Service has yet to be used in a flood situation within the EDZ, although satellite images are regularly acquired for reference mapping and risk analysis. SERTIT has carried out crisis mapping for a number of flood situations further afield, in locations from Germany to China, often in support of the International Charter on Space and Major Disasters, which prioritises the acquisition of satellite imagery for disaster relief operations.

"The use of satellite imagery has recently been added to the operational Civil Protection procedures," concluded Colonel Maurer. "This integration represents a big achievement for the three years of our activity, and shows how the demand for this type of data is here to stay."

This achievement has led to the rapid mapping service continuing its development within the framework of ESA’s Earthwatch GMES Services Elements (GSE), Risk-EOS and Respond, responding to natural disasters and humanitarian aid situations worldwide providing services to the humanitarian aid community to civil defence agencies.

Mariangela D’Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMWMDMVGJE_environment_0.html

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>