Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Finds Stronger Storms Change Heat and Rainfall Worldwide

13.03.2006


Studies have shown that over the last 40 years, a warming climate has been accompanied by fewer rain- and snow-producing storms in mid-latitudes around the world, but the storms that are happening are a little stronger with more precipitation. A new analysis of global satellite data suggests that these storm changes are affecting strongly the Earth’s water cycle and air temperatures and creating contrasting cooling and warming effects in the atmosphere.



The mid-latitudes extend from the subtropics (approximately 30° N and S) to the Arctic Circle (66° 30" N) and the Antarctic Circle (66° 30" S) and include pieces of all of the continents with the exception of Antarctica.

George Tselioudis and William B. Rossow, both scientists at NASA’s Goddard Institute for Space Studies (GISS) and Columbia University, New York, authored the study that appears in the January issue of the American Geophysical Union’s journal, Geophysical Research Letters.


"There are consequences of having fewer but stronger storms in the middle latitudes both on the radiation and on the precipitation fields," Tselioudis said. Using observations from the International Satellite Cloud Climatology Project (ISCCP) and the Global Precipitation Climatology Project (GPCP), Tselioudis and Rossow determined how the changes in intensity and frequency of storms are both cooling and warming the atmosphere around the world.

Fewer and stronger storms in the mid-latitudes affect the radiation field, that is, the solar energy being absorbed and the heat radiation emitted by the Earth. There are two things happening with storms and energy. The first is that sunlight is reflected back into space from the tops of the clouds, creating a cooling effect at the Earth’s surface. Conversely, clouds also act to trap heat radiation and prevent it from escaping into space, creating a warming on the Earth’s atmosphere.

A 1998 study of precipitation data for the continental U.S., showed an increase in more extreme rainfall and snowfall events over the previous 70 to 90 years. Further, climate model studies that Tselioudis and others performed in the last few years indicate that additional levels of carbon dioxide will lead to fewer but more potent storms as has been the case in the last 50 years.

In the present study, when a storm change prediction by a leading climate model was examined, the radiation effects of stronger storms were found to be greater than those produced by the related decrease in the number of storms. Fewer storms mean less cloud cover to reflect sunlight and that adds heat to the Earth. However, more intense storms tend to produce thicker clouds which cool the atmosphere. Tselioudis and Rossow looked at both of those factors, and calculated that the cooling effect is larger than the warming in all months except June, July and August, when the two effects cancel each other.

In terms of precipitation from these storms, the effects of increasing storm intensity also surpass those of decreasing storm frequency. In the northern mid-latitudes, the stronger storms produce 0.05–0.08 millimeter (mm)/day (.002-.003 inch/day) more precipitation. Although this number seems small, the average precipitation daily in the northern mid-latitudes is only around 2 mm/day (.08 inch/day), implying that the strengthening of the storms produces a 3-4% precipitation increase that comes in the form of more intense rain and snow events.

The long-term changes in sunlight and heat produced by the storms have been hard to observe because scientists only have observations for the last 25 years. Also, there are other things that affect how much sunlight is being reflected and absorbed by the Earth, and those are constantly changing. For example, when black soot falls on snow, the black soot absorbs heat from the sun, whereas the white ice would have reflected most of it.

This study presents a method that uses current climate relationships and climate change model predictions to arrive at more complete estimates of radiation and precipitation changes that may occur in a warmer climate.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2006/strong_storms.html
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Seabed mining could destroy ecosystems
23.01.2018 | University of Exeter

nachricht How climate change weakens coral 'immune systems'
23.01.2018 | Ohio State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>