Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Finds Stronger Storms Change Heat and Rainfall Worldwide

13.03.2006


Studies have shown that over the last 40 years, a warming climate has been accompanied by fewer rain- and snow-producing storms in mid-latitudes around the world, but the storms that are happening are a little stronger with more precipitation. A new analysis of global satellite data suggests that these storm changes are affecting strongly the Earth’s water cycle and air temperatures and creating contrasting cooling and warming effects in the atmosphere.



The mid-latitudes extend from the subtropics (approximately 30° N and S) to the Arctic Circle (66° 30" N) and the Antarctic Circle (66° 30" S) and include pieces of all of the continents with the exception of Antarctica.

George Tselioudis and William B. Rossow, both scientists at NASA’s Goddard Institute for Space Studies (GISS) and Columbia University, New York, authored the study that appears in the January issue of the American Geophysical Union’s journal, Geophysical Research Letters.


"There are consequences of having fewer but stronger storms in the middle latitudes both on the radiation and on the precipitation fields," Tselioudis said. Using observations from the International Satellite Cloud Climatology Project (ISCCP) and the Global Precipitation Climatology Project (GPCP), Tselioudis and Rossow determined how the changes in intensity and frequency of storms are both cooling and warming the atmosphere around the world.

Fewer and stronger storms in the mid-latitudes affect the radiation field, that is, the solar energy being absorbed and the heat radiation emitted by the Earth. There are two things happening with storms and energy. The first is that sunlight is reflected back into space from the tops of the clouds, creating a cooling effect at the Earth’s surface. Conversely, clouds also act to trap heat radiation and prevent it from escaping into space, creating a warming on the Earth’s atmosphere.

A 1998 study of precipitation data for the continental U.S., showed an increase in more extreme rainfall and snowfall events over the previous 70 to 90 years. Further, climate model studies that Tselioudis and others performed in the last few years indicate that additional levels of carbon dioxide will lead to fewer but more potent storms as has been the case in the last 50 years.

In the present study, when a storm change prediction by a leading climate model was examined, the radiation effects of stronger storms were found to be greater than those produced by the related decrease in the number of storms. Fewer storms mean less cloud cover to reflect sunlight and that adds heat to the Earth. However, more intense storms tend to produce thicker clouds which cool the atmosphere. Tselioudis and Rossow looked at both of those factors, and calculated that the cooling effect is larger than the warming in all months except June, July and August, when the two effects cancel each other.

In terms of precipitation from these storms, the effects of increasing storm intensity also surpass those of decreasing storm frequency. In the northern mid-latitudes, the stronger storms produce 0.05–0.08 millimeter (mm)/day (.002-.003 inch/day) more precipitation. Although this number seems small, the average precipitation daily in the northern mid-latitudes is only around 2 mm/day (.08 inch/day), implying that the strengthening of the storms produces a 3-4% precipitation increase that comes in the form of more intense rain and snow events.

The long-term changes in sunlight and heat produced by the storms have been hard to observe because scientists only have observations for the last 25 years. Also, there are other things that affect how much sunlight is being reflected and absorbed by the Earth, and those are constantly changing. For example, when black soot falls on snow, the black soot absorbs heat from the sun, whereas the white ice would have reflected most of it.

This study presents a method that uses current climate relationships and climate change model predictions to arrive at more complete estimates of radiation and precipitation changes that may occur in a warmer climate.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2006/strong_storms.html
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Turning the Climate Tide by 2020
29.06.2017 | Potsdam-Institut für Klimafolgenforschung

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>