Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ESA satellite reveals Yellowstone’s deep secret


The rim of the Yellowstone Caldera

Satellite images acquired by ESA’s ERS-2 revealed the recently discovered changes in Yellowstone’s caldera are the result of molten rock movement 15 kilometres below the Earth’s surface, according to a recent study published in Nature.

Using Synthetic Aperture Radar Interferometry, InSAR for short, Charles Wicks, Wayne Thatcher and other U.S. Geological Survey (USGS) scientists mapped the changes in the northern rim of the caldera, or crater, and discovered it had risen about 13 centimetres from 1997 to 2003.

InSAR, a sophisticated version of ’spot the difference’, involves mathematically combining different radar images, acquired from as near as possible to the same point in space at different times, to create digital elevation models and reveal otherwise undetectable changes occurring between image acquisitions.

"We know now how mobile and restless the Yellowstone caldera actually is. Ground-based measurements can be more efficiently deployed because of our work," Thatcher said. "The research could not have been done without satellite radar data."

About 640,000 years ago, a massive volcano erupted in Yellowstone, creating the caldera, which measures some 45 kilometres wide and 75 kilometres long, in the centre of Yellowstone National Park.

At the same time the northern rim of the caldera began rising – referred to as the North Rim Uplift Anomaly (NUA) – in 1997, the floor of the caldera began sinking.

According to the article, published on 2 March 2006, the floor sank as the molten rock (magma) flowed out of the caldera into the Yellowstone volcanic system.

The uplift of the caldera’s rim is theorised to have occurred even as the floor sank because one of the natural valves, which allow the magma to enter into the volcanic system, was unable to accommodate the increased flow of magma, causing it to accumulate beneath the north caldera boundary.

The magma movement may have also triggered the sudden rise in temperatures at the Norris Geyser Basin and the eruption of the Steamboat Geyser in 2000. The world’s largest geyser, Steamboat had been inactive for nine years, but erupted five times between 2000 and 2003.

The disturbances in the geyser during that three-year period are not unique in Yellowstone’s history, but, as stated in the article, this is the first time the changes in the deformation field in the park suggests a cause-and-effect relationship – thanks to the use of InSAR data.

Despite the activity in the caldera, Thatcher said the likelihood for a magmatic eruption is extremely low. However, the area poses other potential risks.

"The possibility of a steam-water explosion (’Phreatic eruption’) is perhaps the greatest risk. Its effects would be quite local, but still potentially dangerous," he said.

Having access to data over long periods of time is important for scientists to identify and analyse long-term trends and changes. ESA now has a 15-year archive of homogenous data thanks to the continuity of satellites ERS-1, ERS-2 and Envisat. Envisat and ERS-2, with a difference in overpass time of 30 minutes, are continually adding to the archive.

"The complete aerial coverage and frequent repeat satellite passes creates a unique suite of deformation measurements of restless volcanoes worldwide. They are particularly useful in remote and inaccessible areas. We will continue to monitor Yellowstone with InSAR imaging," Thatcher said.

Mariangela D’Acunto | alfa
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>