Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New NSF aircraft to probe hazardous atmospheric whirlwinds

07.03.2006


Advanced plane called HIAPER makes its first science mission



Today, the nation’s most-advanced research aircraft will take flight on its first science mission. Scientists aboard will study a severe type of atmospheric turbulence that forms near mountains and endangers planes flying in the vicinity. The mission will last two months, ending on April 30, 2006.

Owned by the National Science Foundation (NSF) and operated by the National Center for Atmospheric Research (NCAR) in Boulder, Colo., the aircraft will fly over treacherous whirlwinds, known as rotors, as they form above the California Sierra Nevada range.


Called HIAPER (High-performance Instrumented Airborne Platform for Environmental Research), the plane will embark on a series of 10-hour flights that will take it from its base at Jefferson County Airport in Colorado to California’s central valley during the Terrain-Induced Rotor Experiment, or T-REX.

Rotors, which form on the lee side of high, steep mountains, have contributed to a number of aircraft accidents, but scientists know little about their structure and evolution. They are common in the Sierras because the area has the steepest topography in the continental United States. Owens Valley, where T-REX will be based, sits some 10,000 feet directly below the highest peaks of the adjacent mountains

Capable of reaching an altitude of 51,000 feet and cruising for 7,000 miles, HIAPER is ideally suited for this experiment, say atmospheric researchers.

"HIAPER’s first science campaign, on the origin and evolution of rotors, could not have been done without the long-range capabilities of such an aircraft," says Margaret Leinen, NSF assistant director for geosciences. "In addition, HIAPER’s communications and data capabilities will allow the entire T-REX science team to participate in the experiment, whether or not they are actually on board."

An international research team of about 60 scientists, led by Vanda Grubisic of the Desert Research Institute in Reno, Nev., will study the rotors from several perspectives. On the ground, researchers will probe rotors with radars, lidars (laser-based radars), automated weather stations, wind profilers, and balloons.

Researchers aboard HIAPER will observe rotors from above and release instruments called dropsondes into the most turbulent areas. Two other aircraft from Great Britain and the University of Wyoming, flying at lower elevations, will gather data and aim cloud radars into the rotors.

"After more than a decade of planning and several years of engineering studies, NSF’s HIAPER is ready for its first full scale research project," says Jim Huning, NSF program director for the airborne platform. "The project will help forecasters predict when and where rotors are most likely to occur and the degree of their intensity, as well as the nature of the mountain waves that crest high above rotors and cause strong turbulence. Without information gathered on HIAPER flights, this understanding would not be possible."

Rotors have intrigued scientists since the 19th century, "and frustrated pilots since they started flying near mountains," Grubisic says. "With the newest advances in airborne measurements, remote sensing, and atmospheric modeling, we are can now tackle basic scientific questions on the evolution and predictability of rotors, and of breaking mountain waves. The results will improve aviation safety near mountainous terrain."

Scientists will also study the pollutants and particles that are moved around by air waves above and near mountains, and that affect climate and air quality. By flying as high as the lower stratosphere, HIAPER will enable researchers to gather data about the distribution of chemicals high in the atmosphere after mountain waves rearrange the chemicals.

"From a scientific point of view, this will be a fantastic part of the atmosphere to be flying around in because of the turbulence and the movements of air masses," says T-REX scientist Jorgen Jensen of NCAR. "With our advanced instrument payload and our flight paths, the amount of data we will collect will be unprecedented for describing airflow over mountains."

Results from this project "should enable models to be more effective in forecasting turbulent conditions associated with mountain waves," says scientist Richard Dirks of NCAR.

The T-REX team will include veteran NCAR researcher Joachim Kuettner, who first explored the newly discovered rotors in Germany in the 1930s with an open sailplane. Now 96, Kuettner is a principal investigator on T-REX. "I’ve always wanted to explore rotors," he says. "It’s taken me this long to find a way."

Thanks to HIAPER, Kuettner’s dream of understanding turbulence near high mountains may soon become a reality.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>