Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New NSF aircraft to probe hazardous atmospheric whirlwinds

07.03.2006


Advanced plane called HIAPER makes its first science mission



Today, the nation’s most-advanced research aircraft will take flight on its first science mission. Scientists aboard will study a severe type of atmospheric turbulence that forms near mountains and endangers planes flying in the vicinity. The mission will last two months, ending on April 30, 2006.

Owned by the National Science Foundation (NSF) and operated by the National Center for Atmospheric Research (NCAR) in Boulder, Colo., the aircraft will fly over treacherous whirlwinds, known as rotors, as they form above the California Sierra Nevada range.


Called HIAPER (High-performance Instrumented Airborne Platform for Environmental Research), the plane will embark on a series of 10-hour flights that will take it from its base at Jefferson County Airport in Colorado to California’s central valley during the Terrain-Induced Rotor Experiment, or T-REX.

Rotors, which form on the lee side of high, steep mountains, have contributed to a number of aircraft accidents, but scientists know little about their structure and evolution. They are common in the Sierras because the area has the steepest topography in the continental United States. Owens Valley, where T-REX will be based, sits some 10,000 feet directly below the highest peaks of the adjacent mountains

Capable of reaching an altitude of 51,000 feet and cruising for 7,000 miles, HIAPER is ideally suited for this experiment, say atmospheric researchers.

"HIAPER’s first science campaign, on the origin and evolution of rotors, could not have been done without the long-range capabilities of such an aircraft," says Margaret Leinen, NSF assistant director for geosciences. "In addition, HIAPER’s communications and data capabilities will allow the entire T-REX science team to participate in the experiment, whether or not they are actually on board."

An international research team of about 60 scientists, led by Vanda Grubisic of the Desert Research Institute in Reno, Nev., will study the rotors from several perspectives. On the ground, researchers will probe rotors with radars, lidars (laser-based radars), automated weather stations, wind profilers, and balloons.

Researchers aboard HIAPER will observe rotors from above and release instruments called dropsondes into the most turbulent areas. Two other aircraft from Great Britain and the University of Wyoming, flying at lower elevations, will gather data and aim cloud radars into the rotors.

"After more than a decade of planning and several years of engineering studies, NSF’s HIAPER is ready for its first full scale research project," says Jim Huning, NSF program director for the airborne platform. "The project will help forecasters predict when and where rotors are most likely to occur and the degree of their intensity, as well as the nature of the mountain waves that crest high above rotors and cause strong turbulence. Without information gathered on HIAPER flights, this understanding would not be possible."

Rotors have intrigued scientists since the 19th century, "and frustrated pilots since they started flying near mountains," Grubisic says. "With the newest advances in airborne measurements, remote sensing, and atmospheric modeling, we are can now tackle basic scientific questions on the evolution and predictability of rotors, and of breaking mountain waves. The results will improve aviation safety near mountainous terrain."

Scientists will also study the pollutants and particles that are moved around by air waves above and near mountains, and that affect climate and air quality. By flying as high as the lower stratosphere, HIAPER will enable researchers to gather data about the distribution of chemicals high in the atmosphere after mountain waves rearrange the chemicals.

"From a scientific point of view, this will be a fantastic part of the atmosphere to be flying around in because of the turbulence and the movements of air masses," says T-REX scientist Jorgen Jensen of NCAR. "With our advanced instrument payload and our flight paths, the amount of data we will collect will be unprecedented for describing airflow over mountains."

Results from this project "should enable models to be more effective in forecasting turbulent conditions associated with mountain waves," says scientist Richard Dirks of NCAR.

The T-REX team will include veteran NCAR researcher Joachim Kuettner, who first explored the newly discovered rotors in Germany in the 1930s with an open sailplane. Now 96, Kuettner is a principal investigator on T-REX. "I’ve always wanted to explore rotors," he says. "It’s taken me this long to find a way."

Thanks to HIAPER, Kuettner’s dream of understanding turbulence near high mountains may soon become a reality.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>