Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than a mile-long core retrieved from Crater Drilling

13.01.2006


Following three months of around-the-clock work, the Chesapeake Bay Impact Crater Deep Drilling Project successfully completed its operations, extracting more than a mile-long segment of rocks and sediments from the Earth. On Dec. 4, the drill bit reached a final depth of 5,795 ft (1.1 miles, 1.77 kilometers) within the structure of the crater.



The impact crater was formed about 35 million years ago when a rock from space struck the Earth at hypersonic speed. Scientists have only recently begun to explore the consequences from that distant event and learn how it has greatly affected the population living in southeastern Virginia today.

“The drilling project was a major success,” said Greg Gohn, a U. S. Geological Survey (USGS) scientist in Reston, Va. “We recovered a nearly complete set of core samples from the top of the crater fill to the crater floor.” USGS and the International Continental Scientific Drilling Program (ICDP) are the project’s sponsors.


Gohn is a co-principal investigator of the drilling project, along with Christian Koeberl of the University of Vienna in Austria, Kenneth Miller of Rutgers University in New Brunswick, NJ, and Uwe Reimold, at Humboldt University in Berlin, Germany.

“This is one of the most complete cores ever obtained in an impact structure,” said Koeberl, “and will allow us to understand a shallow-marine impact event at an unprecedented level.”

The team successfully recovered the complete succession of post-impact sediments above the crater, the entire sequence of rocks broken up during the impact, and rocks from the crater floor. These samples will allow the project’s international science teams to research the post-impact environment, impact-related processes, and the impact process itself. In addition, the team completed geophysical down-hole logging to collect additional data, such as the temperature gradient within the corehole.

Important in this multidisciplinary venture is the analysis of the groundwater reservoir in the Chesapeake Bay impact crater. Findings have direct implications for the millions of people living in the area along Virginia’s eastern shore and to future development. Several teams from the U.S. and Europe are investigating the microbial life present in the impact crater, part of intriguing recent studies of life in exotic environments.

“The post-impact sediments record the recovery of the continental-shelf target area from devastating impact mega-tsunamis to the passive continental shelf and coastal plain that continues today,” said Ken Miller, who chairs the Department of Geological Sciences at Rutgers University. “Comparison of the section in Virginia with more complete sections sampled in New Jersey and Delaware will yield new insight into global sea-level changes and the distribution of water-bearing units in the coastal plain.”

The drillsite is located on private land in Northampton County on Virginia’s Eastern Shore. The site was chosen because of its location above the central part of the buried crater. Drillsite activities began with extensive site preparations in July 2005. The drill rig arrived in early September, and scientists recovered the first core sample on September 15th.

Cores are being stored at the USGS in Reston, VA and will be photographed and documented during the next 3 months. In March 2006 members from all international teams will gather at the USGS to obtain samples of the core for their various studies.

ICDP and USGS provided the initial funding for the drilling project. The project received supplementary funding in late November from ICDP and USGS, and from the Solar System Division of the NASA Science Mission Directorate, which allowed drilling to continue into December. The National Science Foundation, Earth Science Division, is supporting the post-impact studies.

DOSECC (Drilling, Observation, and Sampling of the Earth’s Continental Crust) managed the drillsite operations, and Major Drilling America, Inc. performed the core drilling. DOSECC is a nonprofit corporation whose mission is to provide leadership and technical support in subsurface sampling and monitoring technology for scientific and societal importance.

Ulrich Harms | alfa
Further information:
http://chesapeake.icdp-online.org
http://geology.er.usgs.gov/eespteam/crater/
http://www.gfz-potsdam.de

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>