Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than a mile-long core retrieved from Crater Drilling

13.01.2006


Following three months of around-the-clock work, the Chesapeake Bay Impact Crater Deep Drilling Project successfully completed its operations, extracting more than a mile-long segment of rocks and sediments from the Earth. On Dec. 4, the drill bit reached a final depth of 5,795 ft (1.1 miles, 1.77 kilometers) within the structure of the crater.



The impact crater was formed about 35 million years ago when a rock from space struck the Earth at hypersonic speed. Scientists have only recently begun to explore the consequences from that distant event and learn how it has greatly affected the population living in southeastern Virginia today.

“The drilling project was a major success,” said Greg Gohn, a U. S. Geological Survey (USGS) scientist in Reston, Va. “We recovered a nearly complete set of core samples from the top of the crater fill to the crater floor.” USGS and the International Continental Scientific Drilling Program (ICDP) are the project’s sponsors.


Gohn is a co-principal investigator of the drilling project, along with Christian Koeberl of the University of Vienna in Austria, Kenneth Miller of Rutgers University in New Brunswick, NJ, and Uwe Reimold, at Humboldt University in Berlin, Germany.

“This is one of the most complete cores ever obtained in an impact structure,” said Koeberl, “and will allow us to understand a shallow-marine impact event at an unprecedented level.”

The team successfully recovered the complete succession of post-impact sediments above the crater, the entire sequence of rocks broken up during the impact, and rocks from the crater floor. These samples will allow the project’s international science teams to research the post-impact environment, impact-related processes, and the impact process itself. In addition, the team completed geophysical down-hole logging to collect additional data, such as the temperature gradient within the corehole.

Important in this multidisciplinary venture is the analysis of the groundwater reservoir in the Chesapeake Bay impact crater. Findings have direct implications for the millions of people living in the area along Virginia’s eastern shore and to future development. Several teams from the U.S. and Europe are investigating the microbial life present in the impact crater, part of intriguing recent studies of life in exotic environments.

“The post-impact sediments record the recovery of the continental-shelf target area from devastating impact mega-tsunamis to the passive continental shelf and coastal plain that continues today,” said Ken Miller, who chairs the Department of Geological Sciences at Rutgers University. “Comparison of the section in Virginia with more complete sections sampled in New Jersey and Delaware will yield new insight into global sea-level changes and the distribution of water-bearing units in the coastal plain.”

The drillsite is located on private land in Northampton County on Virginia’s Eastern Shore. The site was chosen because of its location above the central part of the buried crater. Drillsite activities began with extensive site preparations in July 2005. The drill rig arrived in early September, and scientists recovered the first core sample on September 15th.

Cores are being stored at the USGS in Reston, VA and will be photographed and documented during the next 3 months. In March 2006 members from all international teams will gather at the USGS to obtain samples of the core for their various studies.

ICDP and USGS provided the initial funding for the drilling project. The project received supplementary funding in late November from ICDP and USGS, and from the Solar System Division of the NASA Science Mission Directorate, which allowed drilling to continue into December. The National Science Foundation, Earth Science Division, is supporting the post-impact studies.

DOSECC (Drilling, Observation, and Sampling of the Earth’s Continental Crust) managed the drillsite operations, and Major Drilling America, Inc. performed the core drilling. DOSECC is a nonprofit corporation whose mission is to provide leadership and technical support in subsurface sampling and monitoring technology for scientific and societal importance.

Ulrich Harms | alfa
Further information:
http://chesapeake.icdp-online.org
http://geology.er.usgs.gov/eespteam/crater/
http://www.gfz-potsdam.de

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>