Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than a mile-long core retrieved from Crater Drilling

13.01.2006


Following three months of around-the-clock work, the Chesapeake Bay Impact Crater Deep Drilling Project successfully completed its operations, extracting more than a mile-long segment of rocks and sediments from the Earth. On Dec. 4, the drill bit reached a final depth of 5,795 ft (1.1 miles, 1.77 kilometers) within the structure of the crater.



The impact crater was formed about 35 million years ago when a rock from space struck the Earth at hypersonic speed. Scientists have only recently begun to explore the consequences from that distant event and learn how it has greatly affected the population living in southeastern Virginia today.

“The drilling project was a major success,” said Greg Gohn, a U. S. Geological Survey (USGS) scientist in Reston, Va. “We recovered a nearly complete set of core samples from the top of the crater fill to the crater floor.” USGS and the International Continental Scientific Drilling Program (ICDP) are the project’s sponsors.


Gohn is a co-principal investigator of the drilling project, along with Christian Koeberl of the University of Vienna in Austria, Kenneth Miller of Rutgers University in New Brunswick, NJ, and Uwe Reimold, at Humboldt University in Berlin, Germany.

“This is one of the most complete cores ever obtained in an impact structure,” said Koeberl, “and will allow us to understand a shallow-marine impact event at an unprecedented level.”

The team successfully recovered the complete succession of post-impact sediments above the crater, the entire sequence of rocks broken up during the impact, and rocks from the crater floor. These samples will allow the project’s international science teams to research the post-impact environment, impact-related processes, and the impact process itself. In addition, the team completed geophysical down-hole logging to collect additional data, such as the temperature gradient within the corehole.

Important in this multidisciplinary venture is the analysis of the groundwater reservoir in the Chesapeake Bay impact crater. Findings have direct implications for the millions of people living in the area along Virginia’s eastern shore and to future development. Several teams from the U.S. and Europe are investigating the microbial life present in the impact crater, part of intriguing recent studies of life in exotic environments.

“The post-impact sediments record the recovery of the continental-shelf target area from devastating impact mega-tsunamis to the passive continental shelf and coastal plain that continues today,” said Ken Miller, who chairs the Department of Geological Sciences at Rutgers University. “Comparison of the section in Virginia with more complete sections sampled in New Jersey and Delaware will yield new insight into global sea-level changes and the distribution of water-bearing units in the coastal plain.”

The drillsite is located on private land in Northampton County on Virginia’s Eastern Shore. The site was chosen because of its location above the central part of the buried crater. Drillsite activities began with extensive site preparations in July 2005. The drill rig arrived in early September, and scientists recovered the first core sample on September 15th.

Cores are being stored at the USGS in Reston, VA and will be photographed and documented during the next 3 months. In March 2006 members from all international teams will gather at the USGS to obtain samples of the core for their various studies.

ICDP and USGS provided the initial funding for the drilling project. The project received supplementary funding in late November from ICDP and USGS, and from the Solar System Division of the NASA Science Mission Directorate, which allowed drilling to continue into December. The National Science Foundation, Earth Science Division, is supporting the post-impact studies.

DOSECC (Drilling, Observation, and Sampling of the Earth’s Continental Crust) managed the drillsite operations, and Major Drilling America, Inc. performed the core drilling. DOSECC is a nonprofit corporation whose mission is to provide leadership and technical support in subsurface sampling and monitoring technology for scientific and societal importance.

Ulrich Harms | alfa
Further information:
http://chesapeake.icdp-online.org
http://geology.er.usgs.gov/eespteam/crater/
http://www.gfz-potsdam.de

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>