Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than a mile-long core retrieved from Crater Drilling

13.01.2006


Following three months of around-the-clock work, the Chesapeake Bay Impact Crater Deep Drilling Project successfully completed its operations, extracting more than a mile-long segment of rocks and sediments from the Earth. On Dec. 4, the drill bit reached a final depth of 5,795 ft (1.1 miles, 1.77 kilometers) within the structure of the crater.



The impact crater was formed about 35 million years ago when a rock from space struck the Earth at hypersonic speed. Scientists have only recently begun to explore the consequences from that distant event and learn how it has greatly affected the population living in southeastern Virginia today.

“The drilling project was a major success,” said Greg Gohn, a U. S. Geological Survey (USGS) scientist in Reston, Va. “We recovered a nearly complete set of core samples from the top of the crater fill to the crater floor.” USGS and the International Continental Scientific Drilling Program (ICDP) are the project’s sponsors.


Gohn is a co-principal investigator of the drilling project, along with Christian Koeberl of the University of Vienna in Austria, Kenneth Miller of Rutgers University in New Brunswick, NJ, and Uwe Reimold, at Humboldt University in Berlin, Germany.

“This is one of the most complete cores ever obtained in an impact structure,” said Koeberl, “and will allow us to understand a shallow-marine impact event at an unprecedented level.”

The team successfully recovered the complete succession of post-impact sediments above the crater, the entire sequence of rocks broken up during the impact, and rocks from the crater floor. These samples will allow the project’s international science teams to research the post-impact environment, impact-related processes, and the impact process itself. In addition, the team completed geophysical down-hole logging to collect additional data, such as the temperature gradient within the corehole.

Important in this multidisciplinary venture is the analysis of the groundwater reservoir in the Chesapeake Bay impact crater. Findings have direct implications for the millions of people living in the area along Virginia’s eastern shore and to future development. Several teams from the U.S. and Europe are investigating the microbial life present in the impact crater, part of intriguing recent studies of life in exotic environments.

“The post-impact sediments record the recovery of the continental-shelf target area from devastating impact mega-tsunamis to the passive continental shelf and coastal plain that continues today,” said Ken Miller, who chairs the Department of Geological Sciences at Rutgers University. “Comparison of the section in Virginia with more complete sections sampled in New Jersey and Delaware will yield new insight into global sea-level changes and the distribution of water-bearing units in the coastal plain.”

The drillsite is located on private land in Northampton County on Virginia’s Eastern Shore. The site was chosen because of its location above the central part of the buried crater. Drillsite activities began with extensive site preparations in July 2005. The drill rig arrived in early September, and scientists recovered the first core sample on September 15th.

Cores are being stored at the USGS in Reston, VA and will be photographed and documented during the next 3 months. In March 2006 members from all international teams will gather at the USGS to obtain samples of the core for their various studies.

ICDP and USGS provided the initial funding for the drilling project. The project received supplementary funding in late November from ICDP and USGS, and from the Solar System Division of the NASA Science Mission Directorate, which allowed drilling to continue into December. The National Science Foundation, Earth Science Division, is supporting the post-impact studies.

DOSECC (Drilling, Observation, and Sampling of the Earth’s Continental Crust) managed the drillsite operations, and Major Drilling America, Inc. performed the core drilling. DOSECC is a nonprofit corporation whose mission is to provide leadership and technical support in subsurface sampling and monitoring technology for scientific and societal importance.

Ulrich Harms | alfa
Further information:
http://chesapeake.icdp-online.org
http://geology.er.usgs.gov/eespteam/crater/
http://www.gfz-potsdam.de

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>