Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK e-Science project discovers new knowledge about earthquakes

24.11.2005


A UK e-Science project is revealing new scientific insights into earthquakes. Technologies developed under the Discovery Net project are enabling geophysicists to combine two different methods of studying earthquakes and so discover new knowledge that would not have been revealed using one method alone.



A previously unsuspected secondary fault associated with an earthquake in the Kunlun Mountains in South-West China has already come to light. Discovery Net was one of six finalists in the HPC Analytics Challenge at the SC05 supercomputing conference in Seattle last week.

One of the methods uses satellite images to reveal land movement on scales from tens of metres to hundreds of kilometres – the ‘macro’ view. The other uses finite element analysis to model the response of brick-sized volumes of rock to stresses and strains and then add them up to build a picture of likely land movement in the event of an earthquake – the ’micro’ view. Finite element analysis is often used to predict earthquake damage to buildings.


Discovery Net researchers at Imperial College, London, have combined these two approaches using InforSense KDE, a workflow-based integrative analytics platform originally developed under Discovery Net and brought to the commercial market by InforSense, a spin-out company from the Department of Computer Science at Imperial College.

For the macro view, they used satellite images of a large earthquake that occurred in an uninhabited region of the eastern Kunlun mountains in China in 2001. Civil engineers from the University of Oklahoma, US did the finite element analysis to give the micro view.

“We wanted to look at the same problem from different perspectives and bridge the gap so we would know how our models translated to their models,” says Dr Moustafa Ghanem from Imperial College. “We wanted to show how workflow analytics can be used to rapidly combine research techniques which, until recently, were impossible to combine.”

InforSense KDE enables researchers to bridge such gaps by building complex analytic workflows that integrate access to data, software and other services held remotely. Workflows can be stored and audited for re-use by the originator or others via web services, portlets or other visual desktop applications.

“Before Discovery Net, you would have to move the output from one analysis to the next by saving it in a file and moving it to another machine. Now, you can run analyses with complex analytic workflows that coordinate the execution of distributed services. Using grid technologies, the data and analytic components used in the data mining - and the workflows themselves - can be distributed all over the world,” says Dr Ghanem.

The initial input into the Kunlun earthquake analysis was a map of land displacement which the Discovery Net team had generated from satellite images taken before and after the quake. The Oklahoma team used this map to create the initial conditions for their finite element analysis and then to modify their model until it produced the deformation actually seen in a small area of the earthquake region.

“With the refined model, we were able to predict the secondary fault and then find it in the images. We couldn’t have done this with the image analysis alone – but we could when we combined it with the microanalysis,” says Dr Ghanem.

Further use of Discovery Net technology for geohazard modelling could be used to build up a comprehensive geological fault line map of the earth, with areas of elevated tension detailed and annotated with models from research groups from all over the world, say the Discovery Net team.

Contacts
Dr Moustafa Ghanem, Imperial College London tel. 07961 133720, e-mail: mmg@doc.ic.ac.uk

Professor Yike Guo, Imperial College London tel. 020 594 8335, e-mail: yg@doc.ic.ac.uk

Judy Redfearn, e-Science/e-research Communications Officer, EPSRC, tel. 07768 356309, e-mail: judy.redfearn@epsrc.ac.uk

Judy Redfearn | alfa
Further information:
http://www.discovery-on-the.net/
http://www.inforsense.com/
http://www.rcuk.ac.uk/escience.

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>