Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polar expedition contributes to ESA’s ice mission CryoSat

24.02.2005


In a few days, a three-man scientific expedition called Pole Track is to embark upon a gruelling 1000 km trek across the frozen Arctic to collect valuable data for climate-change research. Throughout the demanding two-month expedition, the team will also take thousands of snow depth measurements in support of ESA’s CryoSat mission.


The Pole Track route from Cape Arctichesky to the North Pole



The international Pole Track team is led by the Dutch professional explorer Marc Cornelissen who is passionate about the polar environment and dedicated to bringing about awareness of the environment and contributing to a better understanding of climate change. With more than 10 years experience of exploring the Arctic, Cornelissen says, "Our goal is to not only bring about a heightened awareness of a changing climate and the effect it is having on the fragile Arctic, but also to collect as much accurate scientific data as possible. It has taken a lot of effort to organise the Pole Track expedition, and it is of course physically demanding, but, by providing hard data that can be plugged into climate models we will be contributing to an on-going effort to better understand the Arctic and the changes that are taking place."

Driven by this commitment, Cornelissen and his two team-members, Petter Nyquist from Norway and Doug Stoup from the USA, will be soon setting out from Cape Arctichesky in northern Russia on a unique expedition that will take them all the way to the North Pole on a route that covers a region known as a ’white spot’ from which no recent data have been retrieved.


On skis and dragging sledges, called ’pulks’, loaded with around 150 kg of food and equipment, the Pole Track team will be setting up three weather beacons (one at 82° N, one at 83.5° N and a third at 85° N), which will transmit meteorological data, such as temperature and barometric pressure for up to a year. The position of the beacons will also be tracked by GPS so that the drift of the floating sea-ice can be mapped. The data will be fed into a central database for the International Arctic Buoy Programme and used by scientists all over the world for climate studies. They will also be taking numerous photos to help classify the Arctic terrain.

In addition to setting up the weather stations, the team will be taking around 200 snow depth and snow density measurements every day. This is the data that will be used by ESA to contribute to validating CryoSat. Now scheduled for launch in June this year, CryoSat is the first of a series of Earth Explorer satellites within ESA’s Living Planet Programme. It will measure changes in the elevation of ice sheets and changes in sea-ice thickness with unprecedented accuracy. The aim of the three-year mission is to provide a complete assessment of the influence that climate change is having on the Earth’s polar ice-masses.

To ensure that the data delivered by CryoSat is as accurate as possible, numerous ground and airborne campaign activities have already been carried out in the Arctic. Since the CryoSat signal is sensitive to changes in the properties of the snow and ice, it is crucial to understand, and then correct for, the seasonal changes that occur naturally. Long-term changes due to climate change can then be determined with the highest possible accuracy. To complement these dedicated data sets, the Pole Track team will be taking many measurements of the snow every day of their two-month expedition. In addition, when they encounter cracks in the ice they will also be able to take readings of the freeboard (height by which the ice rises above the water surface) floating sea ice.

"Marc’s expedition provides us with a unique opportunity to acquire information on snow thickness over the Arctic Ocean, something we know will have an influence on CryoSat ice-thickness estimates", says Malcolm Davidson, ESA CryoSat Validation Manager. "If it were not for the Pole Track expedition, it would be very difficult for us to get this type of data. Very few people are equipped or motivated enough to make such long and perilous transects across the polar sea-ice fields, and we are grateful for Marc’s contribution."

Not only will the Pole Track team face the challenges of acquiring precise scientific data throughout their 1000 km trek, the punishing Arctic environment will put their physical fitness and endurance to the test. It takes time to acclimatise and adapt to surviving in such a cold and hostile climate so during the early part of the expedition the team expect to travel less than 10 km a day. Their progress is also dictated by hours of daylight at this time of year.

Since they are walking on floating ice, navigation is always a major issue, so constant compass readings are necessary to ensure that they are still heading north. Each of the three men will be on skis and pulling a sledge that can also be used as a canoe if they have to cross open water - although it is often quicker to actually get in and swim across wearing special dry suits.

The physical energy required to endure the cold and walk on skis pulling the heavy load is immense. This means that the team have to consume around 6000 kilocalories every day, which is more than double the amount an average male would normally consume. Marc Cornelissen explained, "At first it is very difficult to eat such a lot, as it is normal to experience a loss of appetite at the outset of the expedition. However, it is important to build up our food intake gradually so that our bodies get the right amount of energy at the right time. We eat loads of fatty sausages, pasta, cereals, nuts, and of course a lot of chocolate. Even with this high calorie intake, we each expect to have lost around 10 kilos in body weight by the time we reach the North Pole – however, I’m not sure it would catch on as the next diet craze!"

The Pole Track expedition expects to reach the North Pole by 26 April 2005.

Malcolm Davidson | EurekAlert!
Further information:
http://www.esa.int/export/esaLP/SEMLSIYEM4E_index_0.html
http://www.esa.int

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>