Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amadeus and Esmeraldas: two marine geophysics campaigns to investigate strong earthquakes off Ecuador and Colombia

17.02.2005


Several large earthquakes with magnitude higher than 8 on the Richter scale have already occurred along the margins between the Nazca and South American tectonic plates, under the ocean off Ecuador and Colombia. This region is vulnerable, all the more so because since the 1980s, Ecuador’s oil export terminal is sited within it. More information is needed on this zone of extremely high seismic risk. For this reason, two scientific campaigns, “Amadeus” and “Esmeraldas” were launched on 3 February and will run until 6 April 2005.



These campaigns, conducted by the mixed research unit (UMR) Geosciences-Azur (involving the IRD, CNRS, Universities Pierre et Marie Curie and Nice Sophia-Antipolis) working jointly with the University of Bordeaux, the Marine Technology Unit of the CSIC (Higher Council for Scientific Research) at Barcelona, and its international partners: Canadian (University of Victoria, PGC), Colombian (DIMAR, EAFIT and Caldas Universities, and INGEOMINAS) and Ecuadorian (INOCAR, EPN, Petroproduction) have the objective of studying the natural hazards associated with the large subduction earthquakes, submarine avalanches and tsunamis they trigger. The ocean-going campaigns are being conducted on the IFREMER research ship Atalante.

In 1906, a strong earthquake of 8.8 magnitude shook this part of the world. It was induced by the slipping of the Nazca plate under the North Andean margin. The two plates converge at an average rate of 5.5 cm/year. The slipping is expressed as a fracture zone about 500 km long. Reactivation occurred by earthquakes in 1942, 1958 and 1979, of magnitude 7.7 to 8.2, which provoked large tsunamis and submarine sediment slides.


Data from recent campaigns (between 1998 and 2001) showed the spatial variations of the geological structures and the tectonic regime of the margin, demonstrating the complexity of the fracture system that operates when an earthquake occurs and of the conditions that generate tsunamis. This variability prompted researchers to devise more precisely focused investigations, targeting in particular morphological detail and involving “three-dimensional scanning".

The AMADEUS campaign (3 February-9 March) should provide a picture of the morphology and geology of active faults and submarine “landslides”. The research team are performing the three-dimensional mapping of seismic fractures of the past, to date and quantify the volumes of sediment caused to slide in response to earthquake activity and to find the recurrence time of the large subduction earthquakes over the past 5000 years.

The research team is using high-resolution multi-beam probes (EM12D, EM1000), a sediment penetrator (3.5 kHz), rapid seismic probes, and will take drill-core samples of sediments which probably hold a record of the large-scale earthquakes of the past (strong earthquakes can generate large mudslides like the one that occurred for example when the recent earthquake shook Algeria.

The ESMERALDAS campaign (15 March-6 April) will give the opportunity to examine, down to 30 to 50 km depth, the structure and geometry of the contact zone between the two plates, at the points where the most massive earthquakes are initiated.

A network of about 60 submarine and terrestrial seismic stations (OBS) will record the sound waves produced by a device towed by the Atalante. The interpretation of the signals thus recorded will enable the researchers to derive a three-dimensional “echogram” of the sector. The network will then be maintained until June 2005 in order to record the zone’s natural seismic activity.

Analysis of these new data will allow a better understanding of past earthquakes, assessment of the probability of new earthquake occurrence along the coast of Ecuador and Colombia, and to make more reliable digital simulation models of the initiation and propagation of tsunami in the area.

"Amadeus will bring a clearer picture of the activity of the faults identified and also, we hope, record in the sediments to the great earthquakes of the past, which could allow us to trace back to well before the 20th Century," Philippe Charvis, IRD researcher and Director of Geosciences Azur, explained. “Esmeraldas”, he continued, “will provide us with a three-dimensional image of the zone and a means of locating microseisms which signal the accumulation of the various pressures at work."

Helene Deval | alfa
Further information:
http://www-geoazur.unice.fr/
http://www.ird.fr

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>