Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists determine fault near tsunami area moving 10 millimeters per year

21.01.2005


Livermore researchers have determined the Karakorum fault in Tibet, a feature formed by the same tectonic "collision" that caused the recent tsunami, has slipped 10 millimeters per year during the last 140,000 years.


This space shuttle photo looks south from the Tarim Basin in the foregound across the western Kunlun range and on to the Indian subcontinent in the distance. The two major faults of western Tibet, the Karakax and the Karakorum faults, are clearly seen as linear features cutting across the image. Photo: Earth Sciences and Image Analysis/NASA-Johnson Space Center



Earlier research by outside scientists using satellite radar interferometry (InSAR) conducted over a decadal time scale indicated that the Karakorum fault and the Karakax segment of the Altyn Tagh fault in western Tibet are essentially inactive.

But Livermore scientists Rick Ryerson, Marie-Luce Chevalier (a visiting student from the Institut de Physique du Globe de Paris), and Bob Finkel, along with colleagues in France and China, studied Karakorum movement along a single strand of the fault system over a millennial time scale and found the slip to be 10 times larger than that of the slip rate across the entire fault from the InSAR data.


Karakorum is the main right-lateral motion fault north of the Himalayas and is in the same area as the earthquakes that caused the tsunami in Asia. Both areas are located on the northern edge of the Indian plate where northward motion has caused earthquakes and the growth of the Tibetan plateau.

"Determining the past and present movement along the Karakorum fault is crucial in understanding the movement of the entire Asian continent," Ryerson said. "It’s the collision of the India continental material and the Asian continental material that has caused the uplift of the Himalayas and Tibet."

The research appears in the Jan. 21 edition of the journal Science.

Livermore researchers measured the mid- to late-Pleistocene (from two million to 11,000 years ago) slip rate on the southern stretch of the fault by dating two moraine crests displaced by the fault at the end of the Manikala glacial valley. A moraine is an accumulation of boulders, stones or other debris carried and deposited by a glacier. The dating method is based upon the accumulation of isotopes produced when cosmic-rays hit the earth’s surface.

From dating the two moraines, they determined that they become younger from east to west, which is consistent with the right-lateral motion on the fault. "Ultimately this research should lead to the development of new models that accommodate and explain the different slip rates," Ryerson said.

The researchers further concluded that the rate of movement between southwestern Tibet and the western Himalayas should be greater than 10 millimeters per year because movement on the main fault (Altyn Tagh) along with slip from other active faults in the region need to be taken into account.

Researchers from Laboratoire de Tectonique, Institut de Physique du Globe de Paris, Institut de Physique du Globe de Strasbourg, the Chinese Academy of Geological Sciences and Total Exploration China also contributed to the report.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>