Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


No guessing game: Texas A&M team trying to predict earthquakes


People in earthquake-prone California often talk about the "Big One," a devastating quake that many experts say will surely strike the region sometime in the future.

A research team is now working to predict when the big one - and even little ones - might occur. Termed SAFOD (San Andreas Fault Observatory at Depth), the project involves more than 20 researchers from several major universities, labs and government agencies, including the husband-wife team of Fred and Judi Chester of Texas A&M’s College of Geosciences. SAFOD’s goal is a lofty one - to drill directly into the San Andreas Fault about two miles deep, place various types of instruments in the bored-out area, get rock samples and use the new data to extend and test models that may allow researchers to predict when the next major earthquake might hit.

It’s the first time anyone has ever drilled directly into an active fault zone where scientists think an earthquake will occur in the next couple of years. The multi-year project is part of EarthScope, a long-range program to study the tectonics of North America in partnership with the U.S. Geological Survey, and is backed with $220 million in funding from the National Science Foundation. The core samples taken will be housed and studied in the Integrated Ocean Drilling Program (IODP) core repository at Texas A&M, which has some of the world’s best expertise and resources in core handling.

The drill site chosen is near the town of Parkfield, Calif., which is between Los Angeles and San Francisco, and boasts 18 full-time residents but proudly calls itself the "earthquake capital of the world." That claim is no boast: Parkfield has registered at least six quakes of magnitude 6 or higher since 1857, and dozens of smaller ones each year for decades because of its unique location where the Pacific and North American Tectonic Plates converge along the San Andreas Fault line.

Parkfield is located between the sites of the largest recorded earthquakes in California, the 7.9 Fort Tejon quake of 1857 near Los Angeles and the 7.8 quake that occurred in 1906 near San Francisco. "The basic problem is this: earthquakes occur at great depths, so we can’t see what’s going on when they do happen," Fred Chester explains. "Our goal is to drill into the active earthquake zone near Parkfield, collect core samples and leave instruments down there that will collect data ’24/7’ over the next few earthquake cycles."
Chester said earthquakes along the San Andreas occur between two and 10 miles below the Earth’s surface. The Parkfield site is ideal, he says, because of its earthquake frequency. "We know that there have been many earthquakes there in the past, and we are certain there will be many more to come in that area," he adds. "This is the first time in the U.S. for a scientific team to drill into a place where earthquakes are generated. We want to monitor this site for 5 to 10 years and see what changes occur in stress levels, temperature and fluids before and after an earthquake.

"Previous models used to predict earthquakes have pretty much failed," he notes. "We’re hoping this project will give us reliable information so that we can understand the physics of an earthquake at its source, and that we can develop strategies to predict the location, timing and size of earthquakes."

Drilling into the San Andreas Fault line began this summer and uses advance directional drilling technology developed for the oil and gas industry. At most, only about 200 feet can be bored out in a day.

Drilling work will end in summer 2005 at a length of about three miles and depth of two miles, Judi Chester said. And then in 2007, more than a half-mile of core will be collected from across the fault zone. "Some of the most important work will be examining the core samples once they reach IODP at Texas A&M, and the first samples will arrive next month," Judi Chester adds. "We’ve studied fault lines at the surface for many years, and now we can study them at the depth of the earthquake source. These core samples should provide extremely valuable information."

The Parkfield area has averaged a magnitude 6 quake or higher about once in every 22 years, Fred Chester says, with the last one occurring just six weeks ago on Sept. 28. It’s part of a very active area: In 1983, a 6.4 quake struck Coalinga, a small town about 25 miles northwest of Parkfield. Also nearby, the San Simeon quake, magnitude 6.5, killed two people in Paso Robles on Dec. 22, 2003. "The scientific community is becoming more and more confident that earthquake prediction will someday be a reality, but we still have much to learn," Chester adds.

"This project will be the most detailed and exhaustive ever. If nothing else, the information we’ll get about earthquakes will be of tremendous benefit not only for Californians, but for people all around the world who live in earthquake areas."

Keith Randall | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>