Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proof positive: Mars once had water, researchers conclude

07.12.2004


There is undeniable proof that water once existed on the planet Mars, a team of researchers has concluded in a series of 11 articles this week in a special issue of the journal Science.



A team of more than 100 scientists from numerous government agencies and universities, among them Mark Lemmon of Texas A&M University’s College of Geosciences, co-wrote the articles. Lemmon was the principal author on one article and co-author on three others describing the work of Spirit and Opportunity, NASA’s twin rovers that landed on Mars in January. The rovers landed in different locations on Mars and have been sending back data and images for the past 10 months.

The reports in Science focused on results from Opportunity, which is in a region of Mars called Meridiani Planum, although Lemmon’s article and one other described findings from both rovers regarding Mars’ atmosphere.


One of the primary goals of the mission was to learn once and for all if liquid water ever existed on the red planet. That question has now been answered, Lemmon reports. "The conclusion of the entire team, backed by substantial evidence, is that water was indeed present on Mars," Lemmon says. "The proof is there in several ways. There are sulfates present on Mars that were left behind when the water evaporated, plus other salts that show the definite presence of water long ago. "Also, Opportunity examined rocks that show evidence of ’cross-bedding,’ meaning ripples of water once flowed over them. There are also mineral deposits we call blueberries, and on Earth we know these formations only appear if water is present. "So the answer, without a doubt, is yes, liquid water was once on Mars. So far, we have not seen any evidence that liquid water is currently on Mars."

The presence of water could mean that life - in some form - existed on Mars. Lemmon says the atmosphere of Mars contains water, but in miniscule amounts. "Even though we are currently seeing frequent clouds with Opportunity, if you squeezed all of the water out of the atmosphere, it would only be less than 100 microns deep, about the thickness of a human hair," he said.

Because of the lack of water, weather on Mars has a lot to do with dust in the atmosphere. A small dust storm one month before the rovers landed spread small amounts of dust around the planet. "Both rovers saw very dusty skies at first. It was only after the dust settled after a few months that Spirit could see the rim of the crater it was in, Gusev Crater, about 40 miles away," Lemmon said.

British scientists have speculated that the British Mars Lander, Beagle 2, crashed because the atmosphere was thinner than usual as a result of heating caused by atmospheric dust from the December storm. "The other key question is when the liquid water was last present on Mars. Was it a few thousand years ago or billions of years ago?" he points out. "We know that Mars is about four billion years old. We assume that water was there at any time from one to four billion years ago, but we don’t when the last time water was present."

Lemmon says the rock samples and mineral deposits tend to point to a large area of water that once existed on Mars, such as a lake or even a sea. "The marks on some of the rocks and other evidence suggest standing water," he says. "But whether this was once an ocean or other large body of water, we just don’t know."

The next phase in the $820 million NASA mission will have Opportunity examining the heat shield that protected it when it landed, and also have it travel to another crater.Because the rovers use solar power and sunlight is currently limited on Mars, the rovers can only cover from 50 to 100 feet on a good day.

Spirit will continue climbing to the top of Husband Hill, informally named after the Columbia commander Rick Husband, and the tallest hill in the area. The rovers are funded by NASA to collect data and send back photos through March, Lemmon says, but no one knows how long they will keep working. The rovers were originally designed only to operate through April 2004.

Lemmon is participating in another Mars mission in 2007 called Phoenix, which will go to Mars’ north polar region and dig into a permafrost layer to search for evidence that Mars was habitable when the permafrost was liquid.

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>