Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When Earth turned bad: New evidence supports terrestrial cause of end-Permian mass extinction

01.12.2004


Two hundred and fifty million years ago, ninety percent of marine species disappeared and life on land suffered greatly during the world’s largest mass extinction. The cause of this great dying has baffled scientists for decades, and recent speculations invoke asteroid impacts as a kill mechanism. Yet a new study published in the December issue of Geology provides strong indications that the extinction cause did not come from the heavens but from Earth itself.



An international team of scientists led by Christian Koeberl from the University of Vienna studied rock samples taken from deep in the Carnic Alps of southern Austria and the western Dolomites in northeast Italy. Their findings promise to fuel what is already one of the hottest debates in earth science. "Our geochemical analyses of these two famous end-Permian sections in Austria and Italy reveal no tangible evidence of extraterrestrial impact," said Koeberl. "This suggests the mass extinction must have been home-grown."

Layers of rocks contain a chemical testimony of environmental change though time. Asteroids and comets are chemically different from the Earth and when these objects arrive they leave a tell-tale chemical fingerprint in the rocks. With the help of colleagues from the USA and UK, Koeberl confirmed the presence of the element iridium in the samples. Iridium is abundant in asteroids, comets, and other extraterrestrial material.


However, the amounts found were very small compared to those associated with the asteroid impact that many scientists believe killed off the dinosaurs 65 million years ago. At the same time, the team found no traces of the extraterrestrial isotopes helium-3 and osmium-187, commonly associated with impact events.

What the team did find, however, was evidence of purely terrestrial processes at work. According to Koeberl, "The slight concentrations of iridium may have been deposited by sluggish oceans when atmospheric carbon dioxide levels were high and seawater oxygen levels were low. The source of the carbon dioxide was probably volcanic activity."

Large areas of Earth’s crust can be split by volcanic activity to create space in which oceans form. When it comes to cracking continents, however, breaking up is very hard to do. At the close of the Permian, one such failed attempt at ocean forming led to massive volcanic activity in the heart of present day Siberia. Emissions flooded the atmosphere leading to changes in climate and patterns of oceanic circulation.

"Our findings support the view that evidence for an extraterrestrial impact event during this time period is weak and inconsistent," said Koeberl. "At the same time, they suggest that widespread volcanic activity may have been the ’smoking gun,’ quite literally, that wiped out much of life on Earth."

Ann Cairns | EurekAlert!
Further information:
http://www.geosociety.org

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>