Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When Earth turned bad: New evidence supports terrestrial cause of end-Permian mass extinction

01.12.2004


Two hundred and fifty million years ago, ninety percent of marine species disappeared and life on land suffered greatly during the world’s largest mass extinction. The cause of this great dying has baffled scientists for decades, and recent speculations invoke asteroid impacts as a kill mechanism. Yet a new study published in the December issue of Geology provides strong indications that the extinction cause did not come from the heavens but from Earth itself.



An international team of scientists led by Christian Koeberl from the University of Vienna studied rock samples taken from deep in the Carnic Alps of southern Austria and the western Dolomites in northeast Italy. Their findings promise to fuel what is already one of the hottest debates in earth science. "Our geochemical analyses of these two famous end-Permian sections in Austria and Italy reveal no tangible evidence of extraterrestrial impact," said Koeberl. "This suggests the mass extinction must have been home-grown."

Layers of rocks contain a chemical testimony of environmental change though time. Asteroids and comets are chemically different from the Earth and when these objects arrive they leave a tell-tale chemical fingerprint in the rocks. With the help of colleagues from the USA and UK, Koeberl confirmed the presence of the element iridium in the samples. Iridium is abundant in asteroids, comets, and other extraterrestrial material.


However, the amounts found were very small compared to those associated with the asteroid impact that many scientists believe killed off the dinosaurs 65 million years ago. At the same time, the team found no traces of the extraterrestrial isotopes helium-3 and osmium-187, commonly associated with impact events.

What the team did find, however, was evidence of purely terrestrial processes at work. According to Koeberl, "The slight concentrations of iridium may have been deposited by sluggish oceans when atmospheric carbon dioxide levels were high and seawater oxygen levels were low. The source of the carbon dioxide was probably volcanic activity."

Large areas of Earth’s crust can be split by volcanic activity to create space in which oceans form. When it comes to cracking continents, however, breaking up is very hard to do. At the close of the Permian, one such failed attempt at ocean forming led to massive volcanic activity in the heart of present day Siberia. Emissions flooded the atmosphere leading to changes in climate and patterns of oceanic circulation.

"Our findings support the view that evidence for an extraterrestrial impact event during this time period is weak and inconsistent," said Koeberl. "At the same time, they suggest that widespread volcanic activity may have been the ’smoking gun,’ quite literally, that wiped out much of life on Earth."

Ann Cairns | EurekAlert!
Further information:
http://www.geosociety.org

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>