Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Look at past sea-level rise points to troubling future

09.11.2004


Rice U. geologists probe impact of rising seas along US Gulf Coast

New research presented at this week’s annual meeting of the Geological Society of America shows that rising sea levels of as little as a half-meter per century have been sufficient to dramatically change the shoreline of the U.S. Gulf Coast within the past 10,000 years. The findings are significant because half-meter increases are within the moderate range of predictions for the Gulf Coast during this century.

"About 5,000 years ago, when sea level was rising approximately 50 centimeters per century, the upper part of Corpus Christi Bay increased by about one third over the span of about 200 years," said John Anderson, the W. Maurice Ewing Chair in Oceanography and professor of earth science at Rice University in Houston. "Even without factoring in any effects from global warming, that’s only about 20 percent slower than the projected sea level increases along the Texas and Louisiana coasts this century."



Scientists know from oceanographic records that sea level has been rising worldwide for at least 10,000 years. The exact cause is unknown, but the rates of rise for specific eras have been well documented from marine sedimentary records worldwide. Scientists know, for example, that rates of sea level rise have gradually fallen from more than 100 centimeters per century 10,000 years ago to about 20 centimeters per century today -- a rate that’s been confirmed using global tide gauge records from the past 100 years.

But the trend toward slowing rates of sea level rise is expected to reverse this century, as global warming pushes rates back up. According to estimates by the International Panel for Climate Change, rising ocean temperatures this century will add about 30 centimeters to sea level, and glacial runoff from Antarctica -- the least understood of all the phenomena involved -- could add another 40 centimeters. Thus, the worst-case scenario could translate into a 90-centimeter boost in sea level by 2100-- a rate of increase that global coastlines haven’t experienced in about 8,000 years.

Estimating the effects of rising seas on a particular coastline requires more than an accurate assessment of sea level rise, said Anderson. Local geography and geology also play a role. For instance, the coastal plains of southeast Texas and Louisiana are a vast sedimentary plain that is sinking at the rate of about 20 centimeters per century. Moreover, there are other geological forces at work that can be impacted or even overwhelmed by rising seas.

"On geologic time scales, barrier islands like Texas’ Galveston and Padre islands retreat toward land," said Anderson. "The Galveston shoreline, for example, is moving about 1.5 meters inland every year. But the same forces that are slowly eroding the beaches on the windward side of the island deposit that sand on the leeward side, so the island itself remains a stable barrier, even though it marches slowly toward shore."

Anderson’s research has found that rising seas can overwhelm fragile coastal structures like barrier islands and river delta headlands, the vast wetlands that are deposited by rivers when they empty into the sea. He began studying the geography of the U.S. Gulf Coast about 15 years ago. Four of his students -- Alex Simms, Kristy Milliken, Jessie Maddox and Patrick Taha -- are presenting new research Nov. 7-10 at the GSA’s annual meeting in Denver. Much of the new research was done in collaboration with one of Anderson’s former students, University of Alabama Professor Tony Rodriguez.

The findings are drawn from analysis of seafloor cores and other experimental data collected by Anderson’s group, which has used ships and barges to drill cores and take underwater soundings from the southern shores of Texas to Alabama’s Mobile Bay. Analyses have begun to yield a catalogue of reactions that Gulf coastal features undergo in response to specific rates of sea-level rise.

"We know that Sabine bank, a seafloor formation about 20 miles offshore along the Texas-Louisiana border, was a barrier island until just a few thousand years ago," Anderson said. "We know that it was drowned in place, because we have drilled core samples there. We still don’t know what rate of sea-level rise it took to drown the island, but we’re studying that."

Rising seas can also overwhelm tidal wetlands, like those at the head of the Trinity River in upper Galveston Bay or the head of the Nueces River in upper Corpus Christi Bay. Anderson’s group also is finding evidence that a catastrophic collapse of one coastal structure -- like a barrier island -- can result in stress or even in collapse of interconnected structures like tidal wetlands.

"Even with past examples to guide us, devising an accurate model for local shoreline change will be difficult because there is a complex interplay between global events -- like what’s happening in Antarctica -- and local geologic, oceanic, and atmospheric phenomena," said Anderson. "There are many more variables that go into this than I would ever have believed when I started studying the Gulf Coast in the 1980s."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>