Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Look at past sea-level rise points to troubling future

09.11.2004


Rice U. geologists probe impact of rising seas along US Gulf Coast

New research presented at this week’s annual meeting of the Geological Society of America shows that rising sea levels of as little as a half-meter per century have been sufficient to dramatically change the shoreline of the U.S. Gulf Coast within the past 10,000 years. The findings are significant because half-meter increases are within the moderate range of predictions for the Gulf Coast during this century.

"About 5,000 years ago, when sea level was rising approximately 50 centimeters per century, the upper part of Corpus Christi Bay increased by about one third over the span of about 200 years," said John Anderson, the W. Maurice Ewing Chair in Oceanography and professor of earth science at Rice University in Houston. "Even without factoring in any effects from global warming, that’s only about 20 percent slower than the projected sea level increases along the Texas and Louisiana coasts this century."



Scientists know from oceanographic records that sea level has been rising worldwide for at least 10,000 years. The exact cause is unknown, but the rates of rise for specific eras have been well documented from marine sedimentary records worldwide. Scientists know, for example, that rates of sea level rise have gradually fallen from more than 100 centimeters per century 10,000 years ago to about 20 centimeters per century today -- a rate that’s been confirmed using global tide gauge records from the past 100 years.

But the trend toward slowing rates of sea level rise is expected to reverse this century, as global warming pushes rates back up. According to estimates by the International Panel for Climate Change, rising ocean temperatures this century will add about 30 centimeters to sea level, and glacial runoff from Antarctica -- the least understood of all the phenomena involved -- could add another 40 centimeters. Thus, the worst-case scenario could translate into a 90-centimeter boost in sea level by 2100-- a rate of increase that global coastlines haven’t experienced in about 8,000 years.

Estimating the effects of rising seas on a particular coastline requires more than an accurate assessment of sea level rise, said Anderson. Local geography and geology also play a role. For instance, the coastal plains of southeast Texas and Louisiana are a vast sedimentary plain that is sinking at the rate of about 20 centimeters per century. Moreover, there are other geological forces at work that can be impacted or even overwhelmed by rising seas.

"On geologic time scales, barrier islands like Texas’ Galveston and Padre islands retreat toward land," said Anderson. "The Galveston shoreline, for example, is moving about 1.5 meters inland every year. But the same forces that are slowly eroding the beaches on the windward side of the island deposit that sand on the leeward side, so the island itself remains a stable barrier, even though it marches slowly toward shore."

Anderson’s research has found that rising seas can overwhelm fragile coastal structures like barrier islands and river delta headlands, the vast wetlands that are deposited by rivers when they empty into the sea. He began studying the geography of the U.S. Gulf Coast about 15 years ago. Four of his students -- Alex Simms, Kristy Milliken, Jessie Maddox and Patrick Taha -- are presenting new research Nov. 7-10 at the GSA’s annual meeting in Denver. Much of the new research was done in collaboration with one of Anderson’s former students, University of Alabama Professor Tony Rodriguez.

The findings are drawn from analysis of seafloor cores and other experimental data collected by Anderson’s group, which has used ships and barges to drill cores and take underwater soundings from the southern shores of Texas to Alabama’s Mobile Bay. Analyses have begun to yield a catalogue of reactions that Gulf coastal features undergo in response to specific rates of sea-level rise.

"We know that Sabine bank, a seafloor formation about 20 miles offshore along the Texas-Louisiana border, was a barrier island until just a few thousand years ago," Anderson said. "We know that it was drowned in place, because we have drilled core samples there. We still don’t know what rate of sea-level rise it took to drown the island, but we’re studying that."

Rising seas can also overwhelm tidal wetlands, like those at the head of the Trinity River in upper Galveston Bay or the head of the Nueces River in upper Corpus Christi Bay. Anderson’s group also is finding evidence that a catastrophic collapse of one coastal structure -- like a barrier island -- can result in stress or even in collapse of interconnected structures like tidal wetlands.

"Even with past examples to guide us, devising an accurate model for local shoreline change will be difficult because there is a complex interplay between global events -- like what’s happening in Antarctica -- and local geologic, oceanic, and atmospheric phenomena," said Anderson. "There are many more variables that go into this than I would ever have believed when I started studying the Gulf Coast in the 1980s."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Earth Sciences:

nachricht The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht FotoQuest GO: Citizen science campaign targets land-use change in Austria
19.09.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>