Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antarctic Glaciers Surge When Ice Shelves Collapse

22.09.2004


Antarctic glaciers that had been blocked behind the Larsen B ice shelf have been flowing more rapidly into the Weddell Sea, following the break-up of that shelf. Studies based on imagery from two satellites reached similar conclusions, which will be published September 22 in the journal Geophysical Research Letters.

Researchers from NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado, and NASA’s Goddard Space Flight Center (GSFC) in Greenbelt, Maryland, said the findings prove that ice shelves act as "brakes" on the glaciers that flow into them. The results also suggest that climate warming can lead to rapid sea level rise.

Large ice shelves in the Antarctic Peninsula disintegrated in 1995 and 2002, as a result of climate warming. Almost immediately after the 2002 Larsen B ice shelf collapse, researchers observed nearby glaciers flowing up to eight times faster than they did prior to the break-up. The speed-up also caused glacier elevations to drop, lowering them by up to 38 meters [125 feet] in six months.

"Glaciers in the Antarctic Peninsula accelerated in response to the removal of the Larsen B ice shelf," said Eric J. Rignot, a JPL researcher who is lead author of one of the studies. "These two papers clearly illustrate, for the first time, the relationship between ice shelf collapses caused by climate warming and accelerated glacier flow." Rignot’s study used data from the European Space Agency’s European Remote Sensing Satellites (ERS) and the Canadian Space Agency’s RADARSAT satellite.

"If anyone was waiting to find out whether Antarctica would respond quickly to climate warming, I think the answer is yes," said Theodore A. (Ted) Scambos, an NSIDC glaciologist who is lead author of the second study. "We’ve seen 150 miles [240 kilometers] of coastline change drastically in just 15 years." Scambos’s paper used data from Landsat 7 and ICESat, a NASA laser altimetry mission launched in 2003. Landsat 7 is jointly run by NASA and the United States Geological Survey.

The Rignot and Scambos papers illustrate relationships between climate change, ice shelf break-ups, and increased flow of ice from glaciers into the oceans. Increased flow of land ice into the oceans contributes to sea level rise. While the Larsen area glaciers are too small to affect sea level significantly, they offer insight into what will happen when climate change spreads to regions further south, where glaciers are much larger.

Scambos and his colleagues used five Landsat 7 images of the Antarctic Peninsula from before and after the Larsen B break-up. The images revealed crevasses on the surfaces of glaciers, which were used as markers in a computer-matching technique for tracking motion between image pairs. By following the patterns of crevasses from one image to the next, the researchers were able to calculate velocities of the glaciers. The surfaces of glaciers dropped rapidly as the flow sped up, according to ICESat measurements.

"The thinning of these glaciers was so dramatic that it was easily detected with ICESat, which can measure elevation changes to within an inch or two [several centimeters]," said Christopher A. Shuman, a GSFC researcher and a co-author on the Scambos paper. The Scambos study examined the period right after the Larsen B ice shelf collapse, to try to isolate the immediate effects of ice shelf loss on the glaciers.

Rignot’s study used RADARSAT to take monthly measurements that are ongoing. RADARSAT radar sends out signals and tracks their return after they bounce from snow and ice surfaces. Radar is not limited by clouds, while Landsat images require clear skies. RADARSAT can therefore provide continuous and broad velocity information of the ice.

According to Rignot’s study, the Hektoria, Green, and Evans glaciers flowed eight times faster in 2003 than they did in 2000. They slowed moderately in late 2003. The Jorum and Crane glaciers accelerated two-fold in early 2003 and three-fold by the end of 2003. Adjacent glaciers where the shelves remained intact showed no significant changes, according to both studies.

The studies were funded by NASA, the National Science Foundation, and the Instituto Antartico Argentino.

Harvey Leifert | AGU
Further information:
http://www.agu.org
http://www.nasa.gov

More articles from Earth Sciences:

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

nachricht World's first solar fuels reactor for night passes test
21.02.2018 | SolarPACES

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>