Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research May Put a ’Damper’ on Earthquake Destruction

28.07.2004


The next time the New Madrid fault zone produces a strong earthquake, buildings in the Midwest may see less damage if they use a new device developed by a researcher at the University of Missouri-Rolla.

Dr. Genda Chen, associate professor of civil engineering at UMR, has spent the past five years developing a “smart” damper that can adapt to external disturbances such as earthquakes and keep buildings from shaking as much. His most recent findings are included in an upcoming issue of the Journal of Structural Control and Health Monitoring, available Sept. 12. Earlier findings were reported in the March 2004 issue of the International Journal of Structural Engineering and Mechanics and the April 2004 issue of the American Society of Civil Engineers’ Journal of Engineering Mechanics.

Chen’s damper operates much like the brakes of an automobile. “When you drive and go too fast, you press the brake to slow down a little bit,” Chen explains. “Then you release the brake so you can keep your speed in a comfortable range. We’re using the same concept for a building. If, during an earthquake, the building shakes too much, we would like to brake it using a friction device.”



A prototype damper has been tested on a quarter-scale building structure inside a three-story high-bay structures laboratory on campus, Chen says. “My goal is to build and test a 10-ton, full-scale damper in the near future, which can be used to mitigate seismic responses of actual buildings,” he adds.

In a mathematical study, Chen found that a 20-story building would need more than 80 block-sized dampers placed between floors. A V-shaped bracing support would be needed between each floor to keep the building stable.

During an earthquake, sensors embedded in structure members would measure the amount of the building’s movement. If the motion is outside the acceptable limits, a computer would send a signal to a piezoelectric actuator damper – a device that generates a counter-earthquake force when an electrical charge is applied. Once the motion was reduced, the damper would be lifted to allow the building to finish shaking at a much lower vibration level.

The piezoelectric actuator dampers can adjust or adapt to various responses, unlike the passive visco-elastic dampers used in the former World Trade Center to reduce the amount of swaying from high winds.

“The former World Trade Center had more than 20,000 visco-elastic dampers in it,” Chen explains. “But once visco-elastic dampers are installed, they are fixed. If a wind comes much stronger than the designed value for the damper, the dampers won’t be able to provide the additional help needed because there’s no intelligence involved.”

For the past five years, Chen’s work has been supported through a $330,000 CAREER award from the National Science Foundation. The CAREER program supports the early career development of teacher-scholars who are to become academic leaders.

| newswise
Further information:
http://www.umr.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>