Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research May Put a ’Damper’ on Earthquake Destruction

28.07.2004


The next time the New Madrid fault zone produces a strong earthquake, buildings in the Midwest may see less damage if they use a new device developed by a researcher at the University of Missouri-Rolla.

Dr. Genda Chen, associate professor of civil engineering at UMR, has spent the past five years developing a “smart” damper that can adapt to external disturbances such as earthquakes and keep buildings from shaking as much. His most recent findings are included in an upcoming issue of the Journal of Structural Control and Health Monitoring, available Sept. 12. Earlier findings were reported in the March 2004 issue of the International Journal of Structural Engineering and Mechanics and the April 2004 issue of the American Society of Civil Engineers’ Journal of Engineering Mechanics.

Chen’s damper operates much like the brakes of an automobile. “When you drive and go too fast, you press the brake to slow down a little bit,” Chen explains. “Then you release the brake so you can keep your speed in a comfortable range. We’re using the same concept for a building. If, during an earthquake, the building shakes too much, we would like to brake it using a friction device.”



A prototype damper has been tested on a quarter-scale building structure inside a three-story high-bay structures laboratory on campus, Chen says. “My goal is to build and test a 10-ton, full-scale damper in the near future, which can be used to mitigate seismic responses of actual buildings,” he adds.

In a mathematical study, Chen found that a 20-story building would need more than 80 block-sized dampers placed between floors. A V-shaped bracing support would be needed between each floor to keep the building stable.

During an earthquake, sensors embedded in structure members would measure the amount of the building’s movement. If the motion is outside the acceptable limits, a computer would send a signal to a piezoelectric actuator damper – a device that generates a counter-earthquake force when an electrical charge is applied. Once the motion was reduced, the damper would be lifted to allow the building to finish shaking at a much lower vibration level.

The piezoelectric actuator dampers can adjust or adapt to various responses, unlike the passive visco-elastic dampers used in the former World Trade Center to reduce the amount of swaying from high winds.

“The former World Trade Center had more than 20,000 visco-elastic dampers in it,” Chen explains. “But once visco-elastic dampers are installed, they are fixed. If a wind comes much stronger than the designed value for the damper, the dampers won’t be able to provide the additional help needed because there’s no intelligence involved.”

For the past five years, Chen’s work has been supported through a $330,000 CAREER award from the National Science Foundation. The CAREER program supports the early career development of teacher-scholars who are to become academic leaders.

| newswise
Further information:
http://www.umr.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>