Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research May Put a ’Damper’ on Earthquake Destruction

28.07.2004


The next time the New Madrid fault zone produces a strong earthquake, buildings in the Midwest may see less damage if they use a new device developed by a researcher at the University of Missouri-Rolla.

Dr. Genda Chen, associate professor of civil engineering at UMR, has spent the past five years developing a “smart” damper that can adapt to external disturbances such as earthquakes and keep buildings from shaking as much. His most recent findings are included in an upcoming issue of the Journal of Structural Control and Health Monitoring, available Sept. 12. Earlier findings were reported in the March 2004 issue of the International Journal of Structural Engineering and Mechanics and the April 2004 issue of the American Society of Civil Engineers’ Journal of Engineering Mechanics.

Chen’s damper operates much like the brakes of an automobile. “When you drive and go too fast, you press the brake to slow down a little bit,” Chen explains. “Then you release the brake so you can keep your speed in a comfortable range. We’re using the same concept for a building. If, during an earthquake, the building shakes too much, we would like to brake it using a friction device.”



A prototype damper has been tested on a quarter-scale building structure inside a three-story high-bay structures laboratory on campus, Chen says. “My goal is to build and test a 10-ton, full-scale damper in the near future, which can be used to mitigate seismic responses of actual buildings,” he adds.

In a mathematical study, Chen found that a 20-story building would need more than 80 block-sized dampers placed between floors. A V-shaped bracing support would be needed between each floor to keep the building stable.

During an earthquake, sensors embedded in structure members would measure the amount of the building’s movement. If the motion is outside the acceptable limits, a computer would send a signal to a piezoelectric actuator damper – a device that generates a counter-earthquake force when an electrical charge is applied. Once the motion was reduced, the damper would be lifted to allow the building to finish shaking at a much lower vibration level.

The piezoelectric actuator dampers can adjust or adapt to various responses, unlike the passive visco-elastic dampers used in the former World Trade Center to reduce the amount of swaying from high winds.

“The former World Trade Center had more than 20,000 visco-elastic dampers in it,” Chen explains. “But once visco-elastic dampers are installed, they are fixed. If a wind comes much stronger than the designed value for the damper, the dampers won’t be able to provide the additional help needed because there’s no intelligence involved.”

For the past five years, Chen’s work has been supported through a $330,000 CAREER award from the National Science Foundation. The CAREER program supports the early career development of teacher-scholars who are to become academic leaders.

| newswise
Further information:
http://www.umr.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>