Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research May Put a ’Damper’ on Earthquake Destruction

28.07.2004


The next time the New Madrid fault zone produces a strong earthquake, buildings in the Midwest may see less damage if they use a new device developed by a researcher at the University of Missouri-Rolla.

Dr. Genda Chen, associate professor of civil engineering at UMR, has spent the past five years developing a “smart” damper that can adapt to external disturbances such as earthquakes and keep buildings from shaking as much. His most recent findings are included in an upcoming issue of the Journal of Structural Control and Health Monitoring, available Sept. 12. Earlier findings were reported in the March 2004 issue of the International Journal of Structural Engineering and Mechanics and the April 2004 issue of the American Society of Civil Engineers’ Journal of Engineering Mechanics.

Chen’s damper operates much like the brakes of an automobile. “When you drive and go too fast, you press the brake to slow down a little bit,” Chen explains. “Then you release the brake so you can keep your speed in a comfortable range. We’re using the same concept for a building. If, during an earthquake, the building shakes too much, we would like to brake it using a friction device.”



A prototype damper has been tested on a quarter-scale building structure inside a three-story high-bay structures laboratory on campus, Chen says. “My goal is to build and test a 10-ton, full-scale damper in the near future, which can be used to mitigate seismic responses of actual buildings,” he adds.

In a mathematical study, Chen found that a 20-story building would need more than 80 block-sized dampers placed between floors. A V-shaped bracing support would be needed between each floor to keep the building stable.

During an earthquake, sensors embedded in structure members would measure the amount of the building’s movement. If the motion is outside the acceptable limits, a computer would send a signal to a piezoelectric actuator damper – a device that generates a counter-earthquake force when an electrical charge is applied. Once the motion was reduced, the damper would be lifted to allow the building to finish shaking at a much lower vibration level.

The piezoelectric actuator dampers can adjust or adapt to various responses, unlike the passive visco-elastic dampers used in the former World Trade Center to reduce the amount of swaying from high winds.

“The former World Trade Center had more than 20,000 visco-elastic dampers in it,” Chen explains. “But once visco-elastic dampers are installed, they are fixed. If a wind comes much stronger than the designed value for the damper, the dampers won’t be able to provide the additional help needed because there’s no intelligence involved.”

For the past five years, Chen’s work has been supported through a $330,000 CAREER award from the National Science Foundation. The CAREER program supports the early career development of teacher-scholars who are to become academic leaders.

| newswise
Further information:
http://www.umr.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>